Young Gu Her

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8952600/publications.pdf

Version: 2024-02-01

71	1,006	17 h-index	29
papers	citations		g-index
73	73 docs citations	73	1275
all docs		times ranked	citing authors

#	Article	IF	CITATIONS
1	Uncertainty in hydrological analysis of climate change: multi-parameter vs. multi-GCM ensemble predictions. Scientific Reports, 2019, 9, 4974.	1.6	152
2	Impact of the numbers of observations and calibration parameters on equifinality, model performance, and output and parameter uncertainty. Hydrological Processes, 2015, 29, 4220-4237.	1.1	99
3	Evaluation of random forest and regression tree methods for estimation of mass first flush ratio in urban catchments. Journal of Hydrology, 2019, 575, 1099-1110.	2.3	48
4	Biophysical and hydrological effects of future climate change including trends in CO2, in the St. Joseph River watershed, Eastern Corn Belt. Agricultural Water Management, 2017, 180, 280-296.	2.4	44
5	Environmental variables influencing phytoplankton communities in hydrologically connected aquatic habitats in the Lake Xingkai basin. Ecological Indicators, 2018, 91, 1-12.	2.6	44
6	Hydrologic and water quality impacts and biomass production potential on marginal land. Environmental Modelling and Software, 2015, 72, 230-238.	1.9	41
7	Automatic Calibration Tool for Hydrologic Simulation Program-FORTRAN Using a Shuffled Complex Evolution Algorithm. Water (Switzerland), 2015, 7, 503-527.	1.2	41
8	Effect of Watershed Subdivision and Filter Width on SWAT Simulation of a Coastal Plain Watershed (sup) 1 (sup). Journal of the American Water Resources Association, 2010, 46, 586-602.	1.0	35
9	A new framework for modeling decentralized low impact developments using Soil and Water Assessment Tool. Environmental Modelling and Software, 2017, 96, 305-322.	1.9	35
10	Responses of hydrological model equifinality, uncertainty, and performance to multi-objective parameter calibration. Journal of Hydroinformatics, 2018, 20, 864-885.	1.1	34
11	Threshold Effects in HRU Definition of the Soil and Water Assessment Tool. Transactions of the ASABE, 2015, , 367-378.	1.1	29
12	Estimating design floods based on the critical storm duration for small watersheds. Journal of Hydro-Environment Research, 2013, 7, 209-218.	1.0	28
13	Integrated sediment transport process modeling by coupling Soil and Water Assessment Tool and Environmental Fluid Dynamics Code. Environmental Modelling and Software, 2019, 116, 26-39.	1.9	28
14	Implications of spatial and temporal variations in effects of conservation practices on water management strategies. Agricultural Water Management, 2017, 180, 252-266.	2.4	27
15	Design of drainage culverts considering critical storm duration. Biosystems Engineering, 2009, 104, 425-434.	1.9	22
16	Simulink Implementation of a Hydrologic Model: A Tank Model Case Study. Water (Switzerland), 2017, 9, 639.	1.2	22
17	Exploring parsimonious daily rainfall-runoff model structure using the hyperbolic tangent function and Tank model. Journal of Hydrology, 2019, 574, 574-587.	2.3	22
18	Two-dimensional continuous simulation of spatiotemporally varied hydrological processes using the time-area method. Hydrological Processes, 2016, 30, 751-770.	1.1	19

#	Article	IF	CITATIONS
19	Regionalization of a Rainfall-Runoff Model: Limitations and Potentials. Water (Switzerland), 2019, 11, 2257.	1.2	18
20	Linking watershed modeling and bacterial source tracking to better assess E. coli sources. Science of the Total Environment, 2019, 648, 164-175.	3.9	17
21	Implications of Conceptual Channel Representation on <scp>SWAT</scp> Streamflow and Sediment Modeling. Journal of the American Water Resources Association, 2017, 53, 725-747.	1.0	13
22	Estimating Reservoir Inflow and Outflow From Water Level Observations Using Expert Knowledge: Dealing With an Illâ€Posed Water Balance Equation in Reservoir Management. Water Resources Research, 2022, 58, .	1.7	11
23	Evaluating the performance of climate models in reproducing the hydrological characteristics of rainfall events. Hydrological Sciences Journal, 2020, 65, 1490-1511.	1.2	10
24	Lessons from Assessing Uncertainty in Agricultural Water Supply Estimation for Sustainable Rice Production. Agronomy, 2019, 9, 662.	1.3	9
25	Watershed Response to Legacy Phosphorus and Best Management Practices in an Impacted Agricultural Watershed in Florida, U.S.A Land, 2021, 10, 977.	1.2	9
26	Improvement of simulating sub-daily hydrological impacts of rainwater harvesting for landscape irrigation with rain barrels/cisterns in the SWAT model. Science of the Total Environment, 2021, 798, 149336.	3.9	9
27	Uncertainty in Regional Climate Change Impact Assessment using Bias-Correction Technique for Future Climate Scenarios. Journal of the Korean Society of Agricultural Engineers, 2013, 55, 95-106.	0.1	9
28	Interpolating SRTM Elevation Data to Higher Resolution to Improve Hydrologic Analysis. Journal of the American Water Resources Association, 2015, 51, 1072-1087.	1.0	8
29	<scp>HYSTAR</scp> Sediment Model: Distributed Twoâ€Dimensional Simulation of Watershed Erosion and Sediment Transport Using Timeâ€Area Routing. Journal of the American Water Resources Association, 2016, 52, 376-396.	1.0	8
30	SWAT+ versus SWAT2012: Comparison of Sub-Daily Urban Runoff Simulations. Transactions of the ASABE, 2018, 61, 1287-1295.	1.1	8
31	Mapping the US Census Data Using the TIGER/Line Shapefiles. Edis, 2021, 2021, .	0.0	8
32	Development of a Component-Based Modeling Framework for Agricultural Water-Resource Management. Water (Switzerland), 2016, 8, 351.	1.2	7
33	Comparing impacts of parameter and spatial data uncertainty for a grid-based distributed watershed model. Journal of Hydroinformatics, 2016, 18, 961-974.	1.1	7
34	Sensitivity of Simulated Conservation Practice Effectiveness to Representation of Field and In-Stream Processes in the Little River Watershed. Environmental Modeling and Assessment, 2017, 22, 159-173.	1.2	7
35	Assessing the Potential of Agricultural Reservoirs as the Source of Environmental Flow. Water (Switzerland), 2021, 13, 508.	1.2	6
36	Immediate influences of a large dam construction on local storm event patterns and weather variables: a case study of the Three Gorges Project. Weather, 2020, 75, 99-103.	0.6	5

#	Article	IF	Citations
37	Assessing the Effects of Irrigation Water Salinity on Two Ornamental Crops by Remote Spectral Imaging. Agronomy, 2021, 11, 375.	1.3	5
38	Application of Parallel Computing Methods for Improving Efficiency of Optimization in Hydrologic and Water Quality Modeling. Applied Engineering in Agriculture, 2015, , 455-468.	0.3	4
39	A simulation model for estimating root zone saturation indices of agricultural crops in a shallow aquifer and canal system. Agricultural Water Management, 2019, 220, 36-49.	2.4	4
40	Characteristics of Arsenic Leached from Sediments: Agricultural Implications of Abandoned Mines. Applied Sciences (Switzerland), 2019, 9, 4628.	1.3	4
41	Uncertainty in Irrigation Return Flow Estimation: Comparing Conceptual and Physically-Based Parameterization Approaches. Water (Switzerland), 2020, 12, 1125.	1.2	4
42	Alternative CN Averaging Methods for Determining the Representative CN of a Watershed. Journal of Irrigation and Drainage Engineering - ASCE, 2016, 142, 06016004.	0.6	3
43	Characteristics of biochemical oxygen demand and chemical oxygen demand export from paddy fields during rainfall and non-rainfall periods. Paddy and Water Environment, 2019, 17, 165-175.	1.0	3
44	Curve Numbers for Rice Paddies with Different Water Management Practices in Korea. Journal of Irrigation and Drainage Engineering - ASCE, 2019, 145, 06019003.	0.6	3
45	Evaluating the effectiveness of HOCl application on odor reduction and earthworm population growth during vermicomposting of food waste employing Eisenia fetida. PLoS ONE, 2019, 14, e0226229.	1.1	3
46	What Does Florida Weather during the Past 20 Years Look Like? Florida Weather Represented by the Florida Automated Weather Network (FAWN). Edis, 2020, 2020, .	0.0	3
47	Parallelization of a two-dimensional time-area watershed routing. Environmental Modelling and Software, 2021, 146, 105222.	1.9	3
48	Quantifying the contribution of direct runoff and baseflow to nitrogen loading in the Western Lake Erie Basins. Scientific Reports, 2022, 12, .	1.6	3
49	Identification of Hydrologically Sensitive Areas Considering Watershed Process Dynamics. Transactions of the ASABE, 2018, 61, 1891-1906.	1.1	2
50	Evaluating the Applicability of Drainage Routing Schemes for Paddy Fields. Journal of Irrigation and Drainage Engineering - ASCE, 2020, 146, 04020027.	0.6	2
51	Multi-Temporal Arable Land Monitoring in Arid Region of Northwest China Using a New Extraction Index. Sustainability, 2021, 13, 5274.	1.6	2
52	Assessing Applicability of SWAT Calibrated at Multiple Spatial Scales from Field to Stream. Journal of the Korean Society of Agricultural Engineers, 2015, 57, 21-39.	0.1	2
53	Hurricane Impacts on Florida's Agriculture and Natural Resources. Edis, 2018, 2018, .	0.0	2
54	Regional-scale monitoring of underwater and dry ground subsidence in high phreatic areas of North China Plain. PLoS ONE, 2020, 15, e0237878.	1.1	1

#	Article	IF	CITATIONS
55	Estimating USLE Soil Erosion through GIS-based Decision Support System. Journal of the Korean Society of Agricultural Engineers, 2006, 48, 3-14.	0.1	1
56	Identifying feasible nonpoint source pollutant sampling intervals for watersheds with paddy field and urban land uses. Water Science and Technology: Water Supply, 2021, 21, 780-790.	1.0	1
57	Characteristics of chloride loading from urban and agricultural watersheds during storm and non-storm periods. Water Science and Technology: Water Supply, 2021, 21, 1567-1579.	1.0	1
58	Safe Salinity Levels for Irrigation of Two Ornamental Crops: Hibiscus and Mandevilla. Edis, 2022, 2022,	0.0	1
59	A DESIGN FLOOD FORECASTING SYSTEM BASED ON THE CRITICAL STORM DURATION FOR HIGHWAY DRAINAGE FACILITIES. , 2005, , .		0
60	Trends and Patterns in Luangwa River Valley Fires 2003 ~ 2007. , 2008, , .		0
61	Assessment of interpolation methods for refining SRTM and DEM. , 2008, , .		0
62	A simple distributed overland and channel routing method for the Time-Area approach to develop direct runoff hydrograph. , 2010, , .		0
63	Publicly Available Geographic Information Sources and Common Analysis Tools. Edis, 2021, 2021, .	0.0	0
64	Evaluating Applicability of SRTM DEM (Shuttle Radar Topography Mission Digital Elevation Model) in Hydrologic Analysis: A Case Study of Geum River and Daedong River Areas. Journal of the Korean Society of Agricultural Engineers, 2013, 55, 101-112.	0.1	0
65	Evaluating Hydrologic Behavior of Hydrology Simulation using Time Area (HYSTAR) Model through Sensitivity Analysis. Journal of the Korean Society of Agricultural Engineers, 2015, 57, 41-54.	0.1	0
66	Evaluating Applicability of Sediment Transport Capacity Equations through Sensitivity Analysis. Journal of the Korean Society of Agricultural Engineers, 2015, 57, 79-90.	0.1	0
67	How Likely Is a 100-Year Rainfall Event During the Next Ten Years?. Edis, 2018, 2018, .	0.0	0
68	How Is Our Future Climate Projected?. Edis, 2020, 2020, .	0.0	0
69	How Are Our Future Agriculture and Natural Resources Projected under Varying Climate?. Edis, 2020, 2020, .	0.0	0
70	Online Sources for Sea Level Rise Education and Extension. Edis, 2020, 2020, .	0.0	0
71	Florida's Agricultural Carbon Economy as Climate Action: The Potential Role of Farmers and Ranchers. Edis, 2022, 2022, .	0.0	0