Michael Holzinger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8952577/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Organic Functionalization of Carbon Nanotubes. Journal of the American Chemical Society, 2002, 124, 760-761.	6.6	1,193
2	Nanomaterials for biosensing applications: a review. Frontiers in Chemistry, 2014, 2, 63.	1.8	794
3	Sidewall Functionalization of Carbon Nanotubes This work was supported by the European Union under the 5th Framework Research Training Network 1999, HPRNT 1999-00011 FUNCARS Angewandte Chemie - International Edition, 2001, 40, 4002.	7.2	582
4	Mediatorless high-power glucose biofuel cells based on compressed carbon nanotube-enzyme electrodes. Nature Communications, 2011, 2, 370.	5.8	522
5	Functionalization of Single-Walled Carbon Nanotubes with (R-)Oxycarbonyl Nitrenes. Journal of the American Chemical Society, 2003, 125, 8566-8580.	6.6	520
6	Single Glucose Biofuel Cells Implanted in Rats Power Electronic Devices. Scientific Reports, 2013, 3, 1516.	1.6	301
7	Towards glucose biofuel cells implanted in human body for powering artificial organs: Review. Electrochemistry Communications, 2014, 38, 19-23.	2.3	262
8	Carbon nanotube/enzyme biofuel cells. Electrochimica Acta, 2012, 82, 179-190.	2.6	212
9	Recent advances on enzymatic glucose/oxygen and hydrogen/oxygen biofuel cells: Achievements and limitations. Journal of Power Sources, 2016, 325, 252-263.	4.0	195
10	Noncovalently Functionalized Monolayer Graphene for Sensitivity Enhancement of Surface Plasmon Resonance Immunosensors. Journal of the American Chemical Society, 2015, 137, 2800-2803.	6.6	190
11	Synthesis of highly nitrogen-doped multi-walled carbon nanotubes. Chemical Communications, 2003, , 2542.	2.2	167
12	High power enzymatic biofuel cell based on naphthoquinone-mediated oxidation of glucose by glucose oxidase in a carbon nanotube 3D matrix. Physical Chemistry Chemical Physics, 2013, 15, 4892.	1.3	154
13	Electrosynthesized polymers for biosensing. Chemical Society Reviews, 2011, 40, 2146.	18.7	146
14	Recent progress in oxygen-reducing laccase biocathodes for enzymatic biofuel cells. Cellular and Molecular Life Sciences, 2015, 72, 941-952.	2.4	143
15	Enzymatic biosensors based on SWCNT-conducting polymer electrodes. Analyst, The, 2011, 136, 1279.	1.7	126
16	[2+1] cycloaddition for cross-linking SWCNTs. Carbon, 2004, 42, 941-947.	5.4	121
17	Electrocatalytic Oxidation of Glucose by Rhodium Porphyrin-Functionalized MWCNT Electrodes: Application to a Fully Molecular Catalyst-Based Glucose/O ₂ Fuel Cell. Journal of the American Chemical Society, 2012, 134, 14078-14085.	6.6	119
18	Buckypaper bioelectrodes: emerging materials for implantable and wearable biofuel cells. Energy and Environmental Science, 2018, 11, 1670-1687.	15.6	119

#	Article	IF	CITATIONS
19	Supercapacitor/biofuel cell hybrids based on wired enzymes on carbon nanotube matrices: autonomous reloading after high power pulses in neutral buffered glucose solutions. Energy and Environmental Science, 2014, 7, 1884-1888.	15.6	117
20	Production of pure nanotube fibers using a modified wet-spinning method. Carbon, 2005, 43, 2397-2400.	5.4	116
21	Simultaneous electrochemical determination of dopamine and paracetamol based on thin pyrolytic carbon films. Analytical Methods, 2012, 4, 2048.	1.3	95
22	Direct Electron Transfer between a Site-Specific Pyrene-Modified Laccase and Carbon Nanotube/Gold Nanoparticle Supramolecular Assemblies for Bioelectrocatalytic Dioxygen Reduction. ACS Catalysis, 2016, 6, 1894-1900.	5.5	89
23	Adamantane/β-cyclodextrin affinity biosensors based on single-walled carbon nanotubes. Biosensors and Bioelectronics, 2009, 24, 1128-1134.	5.3	88
24	Label-Free Femtomolar Detection of Target DNA by Impedimetric DNA Sensor Based on Poly(pyrrole-nitrilotriacetic acid) Film. Analytical Chemistry, 2010, 82, 1066-1072.	3.2	87
25	Fully Oriented Bilirubin Oxidase on Porphyrinâ€Functionalized Carbon Nanotube Electrodes for Electrocatalytic Oxygen Reduction. Chemistry - A European Journal, 2015, 21, 16868-16873.	1.7	87
26	On the Stacking Behavior of Functionalized Single-Wall Carbon Nanotubes. Journal of Physical Chemistry B, 2002, 106, 6374-6380.	1.2	85
27	A High Power Buckypaper Biofuel Cell: Exploiting 1,10-Phenanthroline-5,6-dione with FAD-Dependent Dehydrogenase for Catalytically-Powerful Glucose Oxidation. ACS Catalysis, 2017, 7, 4408-4416.	5.5	83
28	A new purification method for single-wall carbon nanotubes (SWNTs). Applied Physics A: Materials Science and Processing, 2000, 70, 599-602.	1.1	81
29	DMF-exfoliated graphene for electrochemical NADH detection. Physical Chemistry Chemical Physics, 2011, 13, 7747.	1.3	81
30	Efficient direct oxygen reduction by laccases attached and oriented on pyrene-functionalized polypyrrole/carbon nanotube electrodes. Chemical Communications, 2013, 49, 9281.	2.2	81
31	Supramolecular Immobilization of Laccase on Carbon Nanotube Electrodes Functionalized with (Methylpyrenylaminomethyl)anthraquinone for Direct Electron Reduction of Oxygen. Chemistry - A European Journal, 2013, 19, 9371-9375.	1.7	77
32	A membraneless air-breathing hydrogen biofuel cell based on direct wiring of thermostable enzymes on carbon nanotube electrodes. Chemical Communications, 2015, 51, 7447-7450.	2.2	77
33	Carbon science perspective in 2020: Current research and future challenges. Carbon, 2020, 161, 373-391.	5.4	77
34	A synthetic redox biofilm made from metalloprotein–prion domain chimera nanowires. Nature Chemistry, 2017, 9, 157-163.	6.6	76
35	Recent Advances in Carbon Nanotube-Based Enzymatic Fuel Cells. Frontiers in Bioengineering and Biotechnology, 2014, 2, 45.	2.0	75
36	Freestanding HRP–GOx redox buckypaper as an oxygen-reducing biocathode for biofuel cell applications. Energy and Environmental Science, 2015, 8, 2069-2074.	15.6	75

#	Article	IF	CITATIONS
37	Beyond the hype surrounding biofuel cells: What's the future of enzymatic fuel cells?. Current Opinion in Electrochemistry, 2018, 12, 148-155.	2.5	71
38	Dawson-type polyoxometalate nanoclusters confined in a carbon nanotube matrix as efficient redox mediators for enzymatic glucose biofuel cell anodes and glucose biosensors. Biosensors and Bioelectronics, 2018, 109, 20-26.	5.3	59
39	A double-walled carbon nanotube-based glucose/H2O2 biofuel cell operating under physiological conditions. Electrochemistry Communications, 2013, 34, 105-108.	2.3	58
40	Diazonium Functionalisation of Carbon Nanotubes for Specific Orientation of Multicopper Oxidases: Controlling Electron Entry Points and Oxygen Diffusion to the Enzyme. Chemistry - A European Journal, 2016, 22, 10494-10500.	1.7	58
41	Electrocatalytic O ₂ Reduction at a Bioâ€inspired Mononuclear Copper Phenolato Complex Immobilized on a Carbon Nanotube Electrode. Angewandte Chemie - International Edition, 2016, 55, 2517-2520.	7.2	58
42	Electrogenerated trisbipyridyl Ru(II)-/nitrilotriacetic-polypyrene copolymer for the easy fabrication of label-free photoelectrochemical immunosensor and aptasensor: Application to the determination of thrombin and anti-cholera toxinantibody. Biosensors and Bioelectronics, 2013, 42, 556-562.	5.3	57
43	One-year stability for a glucose/oxygen biofuel cell combined with pH reactivation of the laccase/carbon nanotube biocathode. Bioelectrochemistry, 2015, 106, 73-76.	2.4	57
44	Hosting Adamantane in the Substrate Pocket of Laccase: Direct Bioelectrocatalytic Reduction of O ₂ on Functionalized Carbon Nanotubes. ACS Catalysis, 2016, 6, 4259-4264.	5.5	57
45	Multiple functionalization of single-walled carbon nanotubes by dip coating. Chemical Communications, 2011, 47, 2450-2452.	2.2	56
46	First comparative emission assay of single-wall carbon nanotubes—solutions and dispersions. Chemical Communications, 2003, , 1130-1131.	2.2	54
47	Tris(bispyreneâ€bipyridine)iron(II): A Supramolecular Bridge for the Biofunctionalization of Carbon Nanotubes via l€â€Stacking and Pyrene/l²â€€yclodextrin Host–Guest Interactions. Chemistry - A European Journal, 2011, 17, 10216-10221.	1.7	53
48	Freestanding redox buckypaper electrodes from multi-wall carbon nanotubes for bioelectrocatalytic oxygen reduction via mediated electron transfer. Chemical Science, 2014, 5, 2885-2888.	3.7	47
49	Wiring Laccase on Covalently Modified Graphene: Carbon Nanotube Assemblies for the Direct Bioâ€electrocatalytic Reduction of Oxygen. Chemistry - A European Journal, 2015, 21, 3198-3201.	1.7	47
50	Synergetic Effects of Combined Nanomaterials for Biosensing Applications. Sensors, 2017, 17, 1010.	2.1	47
51	Non-covalent biofunctionalization of single-walled carbon nanotubes via biotin attachment by ï€-stacking interactions and pyrrole polymerization. Analyst, The, 2009, 134, 2412.	1.7	46
52	Three-dimensional carbon nanotube–polypyrrole–[NiFe] hydrogenase electrodes for the efficient electrocatalytic oxidation of H2. International Journal of Hydrogen Energy, 2011, 36, 12096-12101.	3.8	46
53	Direct electron transfer between tyrosinase and multi-walled carbon nanotubes for bioelectrocatalytic oxygen reduction. Electrochemistry Communications, 2012, 20, 19-22.	2.3	46
54	Non-covalent functionalization of carbon nanotubes with boronic acids for the wiring of glycosylated redox enzymes in oxygen-reducing biocathodes. Journal of Materials Chemistry B, 2014, 2, 2228-2232.	2.9	45

#	Article	IF	CITATIONS
55	Electroanalytical Sensing Properties of Pristine and Functionalized Multilayer Graphene. Chemistry of Materials, 2014, 26, 1807-1812.	3.2	43
56	Pyrene-adamantane-β-cyclodextrin: An efficient host–guest system for the biofunctionalization of SWCNT electrodes. Carbon, 2011, 49, 2571-2578.	5.4	42
57	Laccase electrodes based on the combination of single-walled carbon nanotubes and redox layered double hydroxides: Towards the development of biocathode for biofuel cells. Journal of Power Sources, 2010, 195, 4714-4717.	4.0	41
58	13C NMR investigation of carbon nanotubes and derivatives. Current Applied Physics, 2001, 1, 149-155.	1.1	40
59	Voltammetric sensing of recombinant viral dengue virus 2 NS1 based on Au nanoparticle–decorated multiwalled carbon nanotube composites. Mikrochimica Acta, 2020, 187, 363.	2.5	39
60	Functionalized tungsten disulfide nanotubes for dopamine and catechol detection in a tyrosinase-based amperometric biosensor design. Journal of Materials Chemistry B, 2020, 8, 3566-3573.	2.9	38
61	Design of carbon nanotube-polymer frameworks by electropolymerization of SWCNT-pyrrole derivatives. Electrochimica Acta, 2008, 53, 3948-3954.	2.6	37
62	Controlled carbon nanotube layers for impedimetric immunosensors: High performance label free detection and quantification of anti-cholera toxin antibody. Biosensors and Bioelectronics, 2017, 97, 177-183.	5.3	37
63	Aqueous dispersions of SWCNTs using pyrrolic surfactants for the electro-generation of homogeneous nanotube composites. Application to the design of an amperometric biosensor. Journal of Materials Chemistry, 2008, 18, 5129.	6.7	36
64	A H 2 /O 2 enzymatic fuel cell as a sustainable power for a wireless device. Electrochemistry Communications, 2015, 60, 216-220.	2.3	36
65	Biotinâ^î²-Cyclodextrin: A New Host–Guest System for the Immobilization of Biomolecules. Langmuir, 2012, 28, 12569-12574.	1.6	35
66	Glucose oxidase bioanodes for glucose conversion and H2O2 production for horseradish peroxidase biocathodes in a flow through glucose biofuel cell design. Journal of Power Sources, 2018, 392, 176-180.	4.0	35
67	Assembly and Stacking of Flow-through Enzymatic Bioelectrodes for High Power Glucose Fuel Cells. ACS Applied Materials & Interfaces, 2017, 9, 23836-23842.	4.0	34
68	Immobilization of biotinylated biomolecules onto electropolymerized poly(pyrrole-nitrilotriacetic) Tj ETQq0 0 0 r	gBT_/Overl	ock_10 Tf 50
69	Impedimetric biosensor for cancer cell detection. Electrochemistry Communications, 2013, 37, 36-39.	2.3	33
70	MWCNT-supported phthalocyanine cobalt as air-breathing cathodic catalyst in glucose/O2 fuel cells. Journal of Power Sources, 2014, 255, 24-28.	4.0	33
71	Glucose fuel cell based on carbon nanotube-supported pyrene–metalloporphyrin catalysts. Journal of Materials Chemistry A, 2016, 4, 10635-10640.	5.2	31

72Impedimetric quantification of anti-dengue antibodies using functional carbon nanotube deposits
validated with blood plasma assays. Electrochimica Acta, 2018, 274, 84-90.2.631

#	Article	IF	CITATIONS
73	Pyrene functionalized single-walled carbon nanotubes as precursors for high performance biosensors. Electrochimica Acta, 2010, 55, 7800-7803.	2.6	30
74	Carbon nanotube-based flexible biocathode for enzymatic biofuel cells by spray coating. Journal of Power Sources, 2018, 408, 1-6.	4.0	29
75	Enhanced Direct Electron Transfer of a Multihemic Nitrite Reductase on Singleâ€walled Carbon Nanotube Modified Electrodes. Electroanalysis, 2010, 22, 2973-2978.	1.5	28
76	Sidewall Functionalization of Carbon Nanotubes This work was supported by the European Union under the 5th Framework Research Training Network 1999, HPRNT 1999-00011 FUNCARS Angewandte Chemie - International Edition, 2001, 40, 4002-4005.	7.2	26
77	Chemically reduced electrospun polyacrilonitrile–carbon nanotube nanofibers hydrogels as electrode material for bioelectrochemical applications. Carbon, 2015, 87, 233-238.	5.4	25
78	Polyoxometalate [PMo11O39]7â^'/carbon nanocomposites for sensitive amperometric detection of nitrite. Electrochimica Acta, 2016, 222, 402-408.	2.6	25
79	Molecular engineering of the bio/nano-interface for enzymatic electrocatalysis in fuel cells. Sustainable Energy and Fuels, 2018, 2, 2555-2566.	2.5	25
80	Poly(brilliant cresyl blue) electrogenerated on single-walled carbon nanotubes modified electrode and its application in mediated biosensing system. Sensors and Actuators B: Chemical, 2011, 152, 14-20.	4.0	23
81	Electrochemical fabrication of novel fluorescent polymeric film: Poly(pyrrole–pyrene). Electrochemistry Communications, 2008, 10, 1423-1426.	2.3	22
82	Osmium(II) Complexes Bearing Chelating N-Heterocyclic Carbene and Pyrene-Modified Ligands: Surface Electrochemistry and Electron Transfer Mediation of Oxygen Reduction by Multicopper Enzymes. Organometallics, 2016, 35, 2987-2992.	1.1	22
83	3D-nanostructured scaffold electrodes based on single-walled carbon nanotubes and nanodiamonds for high performance biosensors. Carbon, 2013, 61, 349-356.	5.4	21
84	From gold porphyrins to gold nanoparticles: catalytic nanomaterials for glucose oxidation. Nanoscale, 2014, 6, 8556-8560.	2.8	20
85	Micro- to nanostructured poly(pyrrole-nitrilotriacetic acid) films via nanosphere templates: applications to 3D enzyme attachment by affinity interactions. Analytical and Bioanalytical Chemistry, 2014, 406, 1141-1147.	1.9	20
86	Diazonium Electrografting <i>vs</i> . Physical Adsorption of Azure A at Carbon Nanotubes for Mediated Glucose Oxidation with FADâ€GDH. ChemElectroChem, 2020, 7, 4543-4549.	1.7	20
87	Enzymatic versus Electrocatalytic Oxidation of NADH at Carbonâ€Nanotube Electrodes Modified with Glucose Dehydrogenases: Application in a Buckyâ€Paperâ€Based Glucose Enzymatic Fuel Cell. ChemElectroChem, 2016, 3, 2058-2062.	1.7	19
88	Photoelectrochemically-assisted biofuel cell constructed by redox complex and g-C3N4 coated MWCNT bioanode. Biosensors and Bioelectronics, 2020, 169, 112601.	5.3	19
89	Amperometric Biosensors Based on Biotinylated Single-Walled Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 2009, 9, 6042-6046.	0.9	18
90	Supramolecular immobilization of bio-entities for bioelectrochemical applications. New Journal of Chemistry, 2014, 38, 5173-5180.	1.4	18

#	Article	IF	CITATIONS
91	Electrosynthesis of Pyrenediones on Carbon Nanotube Electrodes for Efficient Electron Transfer with FADâ€dependent Glucose Dehydrogenase in Biofuel Cell Anodes. ChemElectroChem, 2019, 6, 5242-5247.	1.7	17
92	Interprotein Electron Transfer between FeSâ€Protein Nanowires and Oxygenâ€Tolerant NiFe Hydrogenase. Angewandte Chemie - International Edition, 2017, 56, 7774-7778.	7.2	16
93	Comparison of Commercial and Labâ€made MWCNT Buckypaper: Physicochemical Properties and Bioelectrocatalytic O ₂ Reduction. Electroanalysis, 2018, 30, 1511-1520.	1.5	16
94	Characterization of multi-walled carbon nanotube electrodes functionalized by electropolymerized tris(pyrrole-ether bipyridine) ruthenium (II). Electrochimica Acta, 2011, 56, 3633-3640.	2.6	15
95	High performance miniature glucose/O2 fuel cell based on porous silicon anion exchange membrane. Electrochemistry Communications, 2015, 54, 10-13.	2.3	15
96	Electrocatalytic O ₂ Reduction at a Bioâ€inspired Mononuclear Copper Phenolato Complex Immobilized on a Carbon Nanotube Electrode. Angewandte Chemie, 2016, 128, 2563-2566.	1.6	15
97	Tuning the redox potential of vitamin K ₃ derivatives by oxidative functionalization using a Ag(<scp>i</scp>)/GO catalyst. Chemical Communications, 2017, 53, 8890-8893.	2.2	14
98	Polymers and nano-objects, a rational combination for developing health monitoring biosensors. Sensors and Actuators B: Chemical, 2021, 348, 130700.	4.0	14
99	Laccase wiring on free-standing electrospun carbon nanofibres using a mediator plug. Chemical Communications, 2015, 51, 14574-14577.	2.2	13
100	Towards eco-friendly power sources: In series connected glucose biofuel cells power a disposable ovulation test. Sensors and Actuators B: Chemical, 2018, 277, 360-364.	4.0	13
101	Ropes of Carbon Nanotubes Intramolecular Junctions. Synthetic Metals, 2003, 137, 1203-1204.	2.1	12
102	Synthesis and electrochemical characterization of original "TEMPOâ€∙functionalized multiwall carbon nanotube materials: Application to iron (II) detection. Electrochemistry Communications, 2015, 60, 131-134.	2.3	12
103	Cubic PdNP-based air-breathing cathodes integrated in glucose hybrid biofuel cells. Nanoscale, 2016, 8, 10433-10440.	2.8	11
104	Electrochemical nanopatterning of an electrogenerated photosensitive poly-[trisbipyridinyl-pyrrole ruthenium(II)] metallopolymer by nanosphere lithography. Electrochemistry Communications, 2014, 46, 75-78.	2.3	10
105	Insights into carbon nanotube-assisted electro-oxidation of polycyclic aromatic hydrocarbons for mediated bioelectrocatalysis. Chemical Communications, 2021, 57, 8957-8960.	2.2	10
106	Hydrazine Electrooxidation with PdNPs and Its Application for a Hybrid Self-Powered Sensor and N ₂ H ₄ Decontamination. Journal of the Electrochemical Society, 2017, 164, H3052-H3057.	1.3	9
107	Electrochemical Characterization of Biotin Functionalized and Regular Single-Walled Carbon Nanotube Coatings. Application to Amperometric Glucose Biosensors. Sensor Letters, 2009, 7, 801-805.	0.4	9
108	Purification and Functionalisation of Nitrogen-Doped Single-Walled Carbon Nanotubes. AIP Conference Proceedings, 2005, , .	0.3	6

#	Article	IF	CITATIONS
109	In situ synthesis of stable mixed ligand Fe2+ complexes on bipyridinyl functionalized electrodes and nanotube supports. Chemical Communications, 2012, 48, 6121.	2.2	6
110	Functionalization of Contacted Carbon Nanotube Forests by Dip Coating for Highâ€Performance Biocathodes. ChemElectroChem, 2020, 7, 4685-4689.	1.7	6
111	Electrochemical modification at multiwalled carbon nanotube electrodes with Azure A for FAD- glucose dehydrogenase wiring: structural optimization to enhance catalytic activity and stability. JPhys Energy, 2021, 3, 024004.	2.3	6
112	Novel purification procedure and derivatization method of single-walled carbon nanotubes (SWNTs). AIP Conference Proceedings, 2000, , .	0.3	5
113	Layer-by-layer scaffold formation using magnetic attraction between HiPCO® single-walled carbon nanotubes and magnetic nanoparticles: Application for high performance immunosensors. Carbon, 2015, 81, 731-738.	5.4	5
114	Flotation Assembly of Large-Area Ultrathin MWCNT Nanofilms for Construction of Bioelectrodes. Nanomaterials, 2017, 7, 342.	1.9	5
115	1. Buckypapers for bioelectrochemical applications. , 2019, , 1-22.		4
116	Preparation and characterisation of LaNixCo1â^'xO3 thin films on polycrystalline Al2O3-substrates. Journal of the European Ceramic Society, 1999, 19, 827-829.	2.8	2
117	Characterization of oxidized SWCNTs by XPS. AIP Conference Proceedings, 2002, , .	0.3	2
118	Prussian blue-functionalised graphene in the amperometric detection of peroxide and hydrazine. Technology, 2013, 01, 58-62.	1.4	2
119	Permeability improvements of electropolymerized polypyrrole films using dissolvable nano-CaCO3 particle templates. Physical Chemistry Chemical Physics, 2014, 16, 5052.	1.3	2
120	Interprotein Electron Transfer between FeSâ€Protein Nanowires and Oxygenâ€Tolerant NiFe Hydrogenase. Angewandte Chemie, 2017, 129, 7882-7886.	1.6	2
121	Conductive Polymers, Immobilization of Macromolecular Bio-Entities. , 2014, , 253-260.		2
122	Enzymatic Glucose Biofuel Cells: Shapes and Growth of Carbon Nanotube Matrices. , 0, , 1-10.		2
123	Extraordinarily high reduction states of fullerenes produced by intercalation with divalent metals. Synthetic Metals, 2003, 135-136, 791-793.	2.1	1
124	Polymerization Of SWCNTs With Di-Nitrens. AIP Conference Proceedings, 2003, , .	0.3	1
125	Purification of Single-Walled Carbon Nanotubes Studied by STM and STS. AIP Conference Proceedings, 2003, , .	0.3	1
126	Synthesis of C and CNx Nanotubes, Using the Aerosol Method. Materials Research Society Symposia Proceedings, 2003, 772, 261.	0.1	1

8

#	Article	IF	CITATIONS
127	Route for Single-Walled Nanotube-Polymer Composites. AIP Conference Proceedings, 2004, , .	0.3	1
128	Permeability Improvement of Electropolymerized Polypyrrole Films in Water Using Magnetic Hydrophilic Microbeads. Electroanalysis, 2009, 21, 887-890.	1.5	1
129	Nanotubes and nanoparticles based 3D scaffolds for the construction of high performance Biosensors. Materials Research Society Symposia Proceedings, 2014, 1700, 97-102.	0.1	1
130	Carbon Nanotube Matrices for Enzymatic Glucose Biofuel Cells: Shapes and Growth. , 2014, , 1-10.		1
131	Exohedral sidewall reactions of single walled carbon nanotubes. AIP Conference Proceedings, 2001, , .	0.3	0
132	Ropes of Carbon Nanotube Intramolecular Junctions. AIP Conference Proceedings, 2002, , .	0.3	0
133	Chapter 18 Immunosensors for clinical and environmental applications based on electropolymerized films: analysis of cholera toxin and hepatitis C virus antibodies in water and serum. Comprehensive Analytical Chemistry, 2007, 49, 381-402.	0.7	0
134	Functionalized Single-Walled Carbon Nanotubes for Electrochemical Biosensor devices. ECS Meeting Abstracts, 2008, , .	0.0	0
135	Nanomaterials for Enzyme Biofuel Cells. , 2013, , 49-66.		0
136	First Eurasian conference on nanotechnology, Baku, Azerbaijan photoelectrochemically-assisted bioanode constructed by Ru-complex and g-C3N4 coated MWCNT electrode. Materials Today: Proceedings, 2021, 42, 1538-1541.	0.9	0