Sonia Silva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8952494/publications.pdf

Version: 2024-02-01

		933447	1125743
13	473	10	13
papers	citations	h-index	g-index
1.0	1.0	1.0	7.41
13	13	13	741
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	RNase H1 Hybrid-Binding Domain-Based Tools for Cellular Biology Studies of DNA–RNA Hybrids in Mammalian Cells. Methods in Molecular Biology, 2022, , 115-125.	0.9	5
2	BRCA2 promotes DNAâ€RNA hybrid resolution by DDX5 helicase at DNA breaks to facilitate their repair‡. EMBO Journal, 2021, 40, e106018.	7.8	63
3	ADAR-mediated RNA editing of DNA:RNA hybrids is required for DNA double strand break repair. Nature Communications, 2021, 12, 5512.	12.8	30
4	Human mitochondrial degradosome prevents harmful mitochondrial R loops and mitochondrial genome instability. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11024-11029.	7.1	67
5	The Smc5/6 complex regulates the yeast Mph1 helicase at RNA-DNA hybrid-mediated DNA damage. PLoS Genetics, 2017, 13, e1007136.	3.5	47
6	SUMO-Dependent Relocalization of Eroded Telomeres to Nuclear Pore Complexes Controls Telomere Recombination. Cell Reports, 2016, 15, 1242-1253.	6.4	79
7	Pro-recombination Role of Srs2 Protein Requires SUMO (Small Ubiquitin-like Modifier) but Is Independent of PCNA (Proliferating Cell Nuclear Antigen) Interaction. Journal of Biological Chemistry, 2016, 291, 7594-7607.	3.4	19
8	SUMOylation of Rad52-Rad59 synergistically change the outcome of mitotic recombination. DNA Repair, 2016, 42, 11-25.	2.8	9
9	Mte1 interacts with Mph1 and promotes crossover recombination and telomere maintenance. Genes and Development, 2016, 30, 700-717.	5.9	27
10	Cmr1/WDR76 defines a nuclear genotoxic stress body linking genome integrity and protein quality control. Nature Communications, 2015, 6, 6533.	12.8	80
11	Cardiovascular risk profile of high school students: A cross-sectional study. Revista Portuguesa De Cardiologia, 2014, 33, 525-534.	0.5	6
12	InÂvitro functional characterization of missense mutations in the LDLR gene. Atherosclerosis, 2012, 225, 128-134.	0.8	21
13	Live Cell Microscopy of DNA Damage Response in Saccharomyces cerevisiae. Methods in Molecular Biology, 2012, 920, 433-443.	0.9	20