Jingsong Zhang

List of Publications by Citations

Source: https://exaly.com/author-pdf/8952419/jingsong-zhang-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

66
papers

70
ext. papers

954
citations

20
h-index
g-index

3.8
4.12
ext. citations
avg, IF

L-index

#	Paper	IF	Citations
66	HNCO + h.nu.(193.3 nm) .fwdarw. H + NCO: Center-of-Mass Translational Energy Distribution, Reaction Dynamics, and D0(H-NCO). <i>The Journal of Physical Chemistry</i> , 1995 , 99, 7446-7452		69
65	UV photodissociation dynamics of ethyl radical via the □ ②A?(3s) state. <i>Journal of Chemical Physics</i> , 2001 , 114, 5164-5169	3.9	53
64	Detection of Nitrous Acid by Cavity Ring-Down Spectroscopy. <i>Environmental Science & Emp; Technology</i> , 2000 , 34, 4221-4227	10.3	52
63	Photodissociation dynamics of ethanol at 193.3 nm: The H-atom channel and ethoxy vibrational distribution. <i>Journal of Chemical Physics</i> , 1999 , 111, 6271-6282	3.9	42
62	Mechanistic studies of the pyrolysis of 1,3-butadiene, 1,3-butadiene-1,1,4,4-d4, 1,2-butadiene, and 2-butyne by supersonic jet/photoionization mass spectrometry. <i>Journal of Physical Chemistry A</i> , 2005 , 109, 2190-6	2.8	39
61	Ab initio study of reaction of dimethyl sulfoxide (DMSO) with OH radical. <i>Chemical Physics Letters</i> , 2002 , 356, 490-496	2.5	35
60	Addition complexes of dimethyl sulfide (DMS) and OH radical and their reactions with O 2 by ab initio and density functional theory. <i>Computational and Theoretical Chemistry</i> , 2001 , 543, 167-175		32
59	Estimating methane emissions in California's urban and rural regions using multitower observations. <i>Journal of Geophysical Research D: Atmospheres</i> , 2016 , 121, 13,031-13,049	4.4	32
58	Ultraviolet photodissociation dynamics of the SH radical. <i>Journal of Chemical Physics</i> , 2005 , 123, 054330	3.9	31
57	State-to-state photodissociation dynamics of OH radical via the A 2\(\textit{H}\) state: Fine-structure distributions of the O(3PJ) product. <i>Journal of Chemical Physics</i> , 2003 , 119, 9989-9992	3.9	27
56	Photoionization of methyl t-butyl ether (MTBE) and t-octyl methyl ether (TOME) and analysis of their pyrolyses by supersonic jet/photoionization mass spectrometry. <i>International Journal of Mass Spectrometry</i> , 2000 , 199, 17-27	1.9	27
55	Ultraviolet photodissociation dynamics of the benzyl radical. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 8296-305	3.6	24
54	Cavity ring-down spectroscopy of ambient NO2 with quantification and elimination of interferences. <i>Environmental Science & Environmental Science & En</i>	10.3	23
53	VUV photoionization time-of-flight mass spectrometry of flash pyrolysis of silane and disilane. <i>Chemical Physics Letters</i> , 2001 , 343, 482-488	2.5	22
52	Crossed Molecular Beam Study of the Reaction Cl + O3. <i>Journal of Physical Chemistry A</i> , 1997 , 101, 6485	- <u>6</u> . \$ 95	21
51	H-Atom Product Channels in the Photodissociation of CH3Cl, CH3Br, and CH3I at 121.6 nm. <i>Journal of Physical Chemistry A</i> , 2001 , 105, 1115-1120	2.8	21
50	Measurements of peroxy radicals using chemical amplification-cavity ringdown spectroscopy. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	20

(2018-2004)

49	Theoretical Study on the Thermochemistry of Chlorinated and Fluorinated Germanes and Their Radical Fragments. <i>Journal of Physical Chemistry A</i> , 2004 , 108, 10346-10353	2.8	20
48	Highly Unsaturated Hydrogenated Silicon Clusters, SinHx(n= 3¶0,x= 0円), in Flash Pyrolysis of Silane and Disilane. <i>Journal of Physical Chemistry A</i> , 2002 , 106, 5081-5087	2.8	20
47	Photodissociation of the vinyl radical (C2H3) via the first excited state: The C2H2(X 1g+)+H channel. <i>Journal of Chemical Physics</i> , 1999 , 111, 3783-3786	3.9	20
46	Flash pyrolysis of ethyl, n-propyl, and isopropyl iodides as monitored by supersonic expansion vacuum ultraviolet photoionization time-of-flight mass spectrometry. <i>Journal of Physical Chemistry A</i> , 2009 , 113, 583-91	2.8	19
45	GeHx (x=0B) and GenHx (n=2D) in flash pyrolysis of GeH4. <i>Chemical Physics Letters</i> , 2002 , 351, 171-177	2.5	19
44	Assessment of an atmospheric transport model for annual inverse estimates of California greenhouse gas emissions. <i>Journal of Geophysical Research D: Atmospheres</i> , 2017 , 122, 1901-1918	4.4	17
43	Photodissociation dynamics of 1-propanol and 2-propanol at 193.3 nm. <i>Journal of Chemical Physics</i> , 2003 , 119, 7179-7187	3.9	16
42	H + NO2 Channels in the Photodissociation of HONO at 193.3 nm□ <i>Journal of Physical Chemistry A</i> , 2001 , 105, 1465-1475	2.8	16
41	Ultraviolet photodissociation dynamics of the n-propyl and i-propyl radicals. <i>Journal of Chemical Physics</i> , 2015 , 142, 224306	3.9	12
40	Atmospheric peroxy radical measurements using dual-channel chemical amplification cavity ringdown spectroscopy. <i>Analytical Chemistry</i> , 2014 , 86, 5391-8	7.8	12
39	Ultraviolet Photodissociation Dynamics of the Allyl Radical via the B (2)A1(3s), C (2)B2(3py), and E(2)B1(3px) Electronic Excited States. <i>Journal of Physical Chemistry A</i> , 2015 , 119, 12318-28	2.8	12
38	Photoinduced C-H bond fission in prototypical organic molecules and radicals. <i>Physical Chemistry Chemical Physics</i> , 2019 , 21, 13880-13901	3.6	11
37	Vacuum ultraviolet photodissociation dynamics of methanol at 121.6 nm. <i>Chemical Physics Letters</i> , 2015 , 619, 18-22	2.5	11
36	Mechanistic study of thermal decomposition of isoprene (2-methyl-1,3-butadiene) using flash pyrolysis supersonic jet VUV photoionization mass spectrometry. <i>Journal of Physical Chemistry A</i> , 2007 , 111, 11487-92	2.8	10
35	Ultraviolet photodissociation dynamics of the o-pyridyl radical. <i>Journal of Physical Chemistry A</i> , 2013 , 117, 12138-45	2.8	9
34	Detection of sulfur dioxide by cavity ring-down spectroscopy. <i>Environmental Science & Environmental &</i>	10.3	9
33	Ultraviolet photodissociation dynamics of the propargyl radical. <i>Journal of Physical Chemistry A</i> , 2009 , 113, 4604-12	2.8	9
32	Mechanism of the thermal decomposition of tetramethylsilane: a flash pyrolysis vacuum ultraviolet photoionization time-of-flight mass spectrometry and density functional theory study. <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 18782-18789	3.6	9

31	Low-pressure yields of stabilized Criegee intermediates CH3CHOO and (CH3)2COO in ozonolysis of trans-2-butene and 2,3-dimethyl-2-butene. <i>Chemical Physics Letters</i> , 2017 , 683, 647-652	2.5	8
30	Thermal decomposition of tetramethylsilane and tetramethylgermane by flash pyrolysis vacuum ultraviolet photoionization time-of-flight mass spectrometry. <i>International Journal of Mass Spectrometry</i> , 2014 , 373, 50-55	1.9	8
29	Mixed silicongermanium clusters, SixGeyHz, in the gas phase by flash pyrolysis of silane and germane. <i>Chemical Physics Letters</i> , 2008 , 459, 49-53	2.5	8
28	H-atom product channel and mode specificity in the near-UV photodissociation of thiomethoxy radical via the \$\mathbb{Q}\$A1 state. Chemical Physics Letters, 2008 , 467, 46-51	2.5	8
27	Ultraviolet Photodissociation Dynamics of the 1-Propenyl Radical. <i>Journal of Physical Chemistry A</i> , 2016 , 120, 5248-56	2.8	8
26	Flash Pyrolysis of t-Butyl Hydroperoxide and Di-t-butyl Peroxide: Evidence of Roaming in the Decomposition of Organic Hydroperoxides. <i>Journal of Physical Chemistry A</i> , 2017 , 121, 7846-7853	2.8	7
25	Atmospheric observation-based estimation of fossil fuel CO emissions from regions of central and southern California. <i>Science of the Total Environment</i> , 2019 , 664, 381-391	10.2	7
24	Ultraviolet photodissociation dynamics of the phenyl radical. <i>Journal of Chemical Physics</i> , 2012 , 136, 044	13,098	7
23	Dynamical interference in the vibronic bond breaking reaction of HCO. <i>Science Advances</i> , 2019 , 5, eaau0) 5:8 2 3	7
22	Pyrolysis of 2-methoxy-2,3,3-trimethylbutane (MTMB) monitored by 118nm photoionization mass spectrometry. <i>International Journal of Mass Spectrometry</i> , 2006 , 249-250, 303-310	1.9	6
21	Inverse Estimation of an Annual Cycle of California's Nitrous Oxide Emissions. <i>Journal of Geophysical Research D: Atmospheres</i> , 2018 , 123, 4758-4771	4.4	5
20	H atom Product Channels in the Ultraviolet Photodissociation of the 2-Propenyl Radical. <i>Journal of Physical Chemistry A</i> , 2019 , 123, 9957-9965	2.8	5
19	Thermal decomposition of methyltrichlorosilane, dimethyldichlorosilane and methyldichlorosilane by flash pyrolysis vacuum ultraviolet photoionization time-of-flight mass spectrometry. <i>European Journal of Mass Spectrometry</i> , 2014 , 20, 409-17	1.1	5
18	Ultraviolet photodissociation of the SD radical in vibrationally ground and excited states. <i>Physical Chemistry Chemical Physics</i> , 2009 , 11, 4761-9	3.6	5
17	Ultraviolet photodissociation dynamics of 1-pentyl radical Chinese Journal of Chemical Physics, 2018 , 31, 439-445	0.9	5
16	Mechanistic Study of Thermal Decomposition of Hexamethyldisilane by Flash Pyrolysis Vacuum Ultraviolet Photoionization Time-of-Flight Mass Spectrometry and Density Functional Theory. Journal of Physical Chemistry A, 2019, 123, 10520-10528	2.8	4
15	Product yields of stabilized Criegee intermediates in the ozonolysis reactions of cis-2-butene, 2-methyl-2-butene, cyclopentene, and cyclohexene. <i>Science China Chemistry</i> , 2018 , 61, 850-856	7.9	4
14	A multiphoton ionization study of acetone using time-of-flight mass spectrometry. <i>Science Bulletin</i> , 2010 , 55, 3123-3130		3

LIST OF PUBLICATIONS

13	PHOTODISSOCIATION DYNAMICS OF FREE RADICALS. <i>Advanced Series in Physical Chemistry</i> , 2004 , 465-	-521	3	
12	Thermal decomposition of cyclohexane by flash pyrolysis vacuum ultraviolet photoionization time-of-flight mass spectrometry: a study on the initial unimolecular decomposition mechanism. <i>Physical Chemistry Chemical Physics</i> , 2021 , 23, 9804-9813	3.6	3	
11	Ultraviolet photodissociation dynamics of the n-butyl, s-butyl, and t-butyl radicals. <i>Journal of Chemical Physics</i> , 2020 , 152, 244303	3.9	2	
10	H-atom Dissociation Channels in Ultraviolet Photochemistry of m-Pyridyl Radical. <i>Chinese Journal of Chemical Physics</i> , 2014 , 27, 621-627	0.9	2	
9	Two-photon dissociation dynamics of hydroxyl radical Chinese Journal of Chemical Physics, 2020 , 33, 129-134	0.9	2	
8	Thermal decomposition of 1-hexene by flash pyrolysis: A study of initial decomposition mechanism. <i>Proceedings of the Combustion Institute</i> , 2021 , 38, 651-659	5.9	2	
7	State-to-state predissociation dynamics of hydroxyl radical via the A2# state. <i>Molecular Physics</i> , 2021 , 119, e1837974	1.7	2	
6	Thermal decomposition mechanism of allyltrichlorosilane and allyltrimethylsilane. <i>International Journal of Mass Spectrometry</i> , 2021 , 460, 116476	1.9	2	
5	H-Atom Product Channel in the Ultraviolet Photodissociation of the Thiomethoxy Radical (CHS) via the B A State. <i>Journal of Physical Chemistry A</i> , 2019 , 123, 5849-5858	2.8	1	
4	Measurement of aerosol optical extinction using diode laser cavity ringdown spectroscopy. <i>Science Bulletin</i> , 2013 , 58, 2440-2446		1	
3	Photodissociation Dynamics of Vinoxy Radical via the B A? State: The H + CHCO Product Channel. Journal of Physical Chemistry A, 2021 , 125, 8882-8890	2.8	1	
2	Rotational Modulation of ?-State Photodissociation of HCO via Renner-Teller Nonadiabatic Transitions. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 6582-6588	6.4	1	
1	A Special Issue to Celebrate. <i>Chinese Journal of Chemical Physics</i> , 2018 , 31, 367-367	0.9		