
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8951939/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Vertical silica nanochannels supported by nanocarbon composite for simultaneous detection of serotonin and melatonin in biological fluids. Sensors and Actuators B: Chemical, 2022, 353, 131101.	7.8	47
2	Electrochemical Sensor Nanoarchitectonics for Sensitive Detection of Uric Acid in Human Whole Blood Based on Screen-Printed Carbon Electrode Equipped with Vertically-Ordered Mesoporous Silica-Nanochannel Film. Nanomaterials, 2022, 12, 1157.	4.1	41
3	Ultrasensitive Immunosensor for Prostate-Specific Antigen Based on Enhanced Electrochemiluminescence by Vertically Ordered Mesoporous Silica-Nanochannel Film. Frontiers in Chemistry, 2022, 10, 851178.	3.6	35
4	Novel three-dimensional graphene nanomesh prepared by facile electro-etching for improved electroanalytical performance for small biomolecules. Materials and Design, 2022, 215, 110506.	7.0	47
5	Facile Pretreatment of Three-Dimensional Graphene through Electrochemical Polarization for Improved Electrocatalytic Performance and Simultaneous Electrochemical Detection of Catechol and Hydroquinone. Nanomaterials, 2022, 12, 65.	4.1	22
6	Nanochannel Array on Electrochemically Polarized Screen Printed Carbon Electrode for Rapid and Sensitive Electrochemical Determination of Clozapine in Human Whole Blood. Molecules, 2022, 27, 2739.	3.8	27
7	Direct and Sensitive Electrochemical Detection of Bisphenol A in Complex Environmental Samples Using a Simple and Convenient Nanochannel-Modified Electrode. Frontiers in Chemistry, 2022, 10, .	3.6	13
8	Bipolar silica nanochannel array for dual-mode electrochemiluminescence and electrochemical immunosensing platform. Sensors and Actuators B: Chemical, 2022, 368, 132086.	7.8	47
9	Tailoring molecular permeability of vertically-ordered mesoporous silica-nanochannel films on graphene for selectively enhanced determination of dihydroxybenzene isomers in environmental water samples. Journal of Hazardous Materials, 2021, 410, 124636.	12.4	49
10	Integration of vertically-ordered mesoporous silica-nanochannel film with electro-activated glassy carbon electrode for improved electroanalysis in complex samples. Talanta, 2021, 225, 122066.	5.5	21
11	Sensitive Detection of Sulfide Ion Based on Fluorescent Ionic Liquid–Graphene Quantum Dots Nanocomposite. Frontiers in Chemistry, 2021, 9, 658045.	3.6	16
12	Dual anions engineering on nickel cobalt-based catalyst for optimal hydrogen evolution electrocatalysis. Journal of Colloid and Interface Science, 2021, 589, 127-134.	9.4	30
13	One-Step Preparation of Nitrogen-Doped Graphene Quantum Dots With Anodic Electrochemiluminescence for Sensitive Detection of Hydrogen Peroxide and Glucose. Frontiers in Chemistry, 2021, 9, 688358.	3.6	25
14	Graphene quantum dots assisted exfoliation of atomically-thin 2D materials and as-formed 0D/2D van der Waals heterojunction for HER. Carbon, 2021, 184, 554-561.	10.3	43
15	Vertically-ordered mesoporous silica films on graphene for anti-fouling electrochemical detection of tert-butylhydroquinone in cosmetics and edible oils. Journal of Electroanalytical Chemistry, 2021, 881, 114969.	3.8	28
16	Rapid and sensitive determination of doxorubicin in human whole blood by vertically-ordered mesoporous silica film modified electrochemically pretreated glassy carbon electrodes. RSC Advances, 2021, 11, 9021-9028.	3.6	18
17	Vertically oriented mesoporous silica film modified fluorine-doped tin oxide electrode for enhanced electrochemiluminescence detection of lidocaine in serum. RSC Advances, 2021, 11, 34669-34675.	3.6	19
18	Vertically Ordered Mesoporous Silica-Nanochannel Film-Equipped Three-Dimensional Macroporous Graphene as Sensitive Electrochemiluminescence Platform. Frontiers in Chemistry, 2021, 9, 770512.	3.6	11

#	Article	IF	CITATIONS
19	Reagentless and sensitive determination of carcinoembryonic antigen based on a stable Prussian blue modified electrode. RSC Advances, 2020, 10, 38316-38322.	3.6	23
20	Direct electrochemical detection of 4-aminophenol in pharmaceuticals using ITO electrodes modified with vertically-ordered mesoporous silica-nanochannel films. Journal of Electroanalytical Chemistry, 2020, 878, 114568.	3.8	19
21	Phenylboronic acid-functionalized vertically ordered mesoporous silica films for selective electrochemical determinationÂof fluoride ion in tap water. Mikrochimica Acta, 2020, 187, 470.	5.0	35
22	Trace Iridium Engineering on Nickel Hydroxide Nanosheets as Highâ€active Catalyst for Overall Water Splitting. ChemCatChem, 2020, 12, 5720-5726.	3.7	19
23	Fast one-step fabrication of a vertically-ordered mesoporous silica-nanochannel film on graphene for direct and sensitive detection of doxorubicin in human whole blood. Journal of Materials Chemistry C, 2020, 8, 7113-7119.	5.5	56
24	Highly sensitive detection of rutin in pharmaceuticals and human serum using ITO electrodes modified with vertically-ordered mesoporous silica–graphene nanocomposite films. Journal of Materials Chemistry B, 2020, 8, 10630-10636.	5.8	25
25	Facile surface modification of textiles with photocatalytic carbon nitride nanosheets and the excellent performance for self-cleaning and degradation of gaseous formaldehyde. Journal of Colloid and Interface Science, 2019, 533, 144-153.	9.4	64
26	Amphiphilic graphene quantum dots as a new class of surfactants. Carbon, 2019, 153, 127-135.	10.3	55
27	Oxygen vacancies confined in Co ₃ O ₄ quantum dots for promoting oxygen evolution electrocatalysis. Inorganic Chemistry Frontiers, 2019, 6, 2055-2060.	6.0	78
28	One-step synthesis of boron-doped graphene quantum dots for fluorescent sensors and biosensor. Talanta, 2019, 199, 581-589.	5.5	112
29	Recent Advances on Graphene Quantum Dots: From Chemistry and Physics to Applications. Advanced Materials, 2019, 31, e1808283.	21.0	603
30	Improved adhesion and performance of vertically-aligned mesoporous silica-nanochannel film on reduced graphene oxide for direct electrochemical analysis of human serum. Sensors and Actuators B: Chemical, 2019, 288, 133-140.	7.8	38
31	Graphene quantum dots decorated graphitic carbon nitride nanorods for photocatalytic removal of antibiotics. Journal of Colloid and Interface Science, 2019, 548, 56-65.	9.4	148
32	Gram-scale synthesis of nitrogen doped graphene quantum dots for sensitive detection of mercury ions and <scp>l</scp> -cysteine. RSC Advances, 2019, 9, 32977-32983.	3.6	35
33	Direct and sensitive detection of sulfide ions based on one-step synthesis of ionic liquid functionalized fluorescent carbon nanoribbons. RSC Advances, 2019, 9, 37484-37490.	3.6	14
34	Photoâ€Induced Hydrogel Formation Based on g ₃ N ₄ Nanosheets with Self rossâ€Linked 3D Framework for UV Protection Application. Macromolecular Materials and Engineering, 2019, 304, 1800500.	3.6	26
35	Synergistic effects of phosphorous/sulfur co-doping and morphological regulation for enhanced photocatalytic performance of graphitic carbon nitride nanosheets. Journal of Materials Science, 2019, 54, 1593-1605.	3.7	52
36	Aqueous synthesis of amphiphilic graphene quantum dots and their application as surfactants for preparing of fluorescent polymer microspheres. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 563, 77-83.	4.7	35

#	Article	IF	CITATIONS
37	Simultaneous label-free and pretreatment-free detection of heavy metal ions in complex samples using electrodes decorated with vertically ordered silica nanochannels. Sensors and Actuators B: Chemical, 2018, 259, 364-371.	7.8	86
38	Tailoring the Electronic Properties of Graphene Quantum Dots by P Doping and Their Enhanced Performance in Metal-Free Composite Photocatalyst. Journal of Physical Chemistry C, 2018, 122, 349-358.	3.1	108
39	S-doped graphene quantum dots as nanophotocatalyst for visible light degradation. Chinese Chemical Letters, 2018, 29, 1698-1701.	9.0	59
40	Quasi-homogeneous carbocatalysis for one-pot selective conversion of carbohydrates to 5-hydroxymethylfurfural using sulfonated graphene quantum dots. Carbon, 2018, 136, 224-233.	10.3	60
41	Graphene quantum dot engineered nickel-cobalt phosphide as highly efficient bifunctional catalyst for overall water splitting. Nano Energy, 2018, 48, 284-291.	16.0	143
42	Systematic Bandgap Engineering of Graphene Quantum Dots and Applications for Photocatalytic Water Splitting and CO ₂ Reduction. ACS Nano, 2018, 12, 3523-3532.	14.6	341
43	Graphene quantum dots based fluorescence turn-on nanoprobe for highly sensitive and selective imaging of hydrogen sulfide in living cells. Biomaterials Science, 2018, 6, 779-784.	5.4	42
44	One-step fabrication of novel superhydrophobic and superoleophilic sponge with outstanding absorbency and flame-retardancy for the selective removal of oily organic solvent from water. Applied Surface Science, 2018, 428, 338-347.	6.1	50
45	Nanochannel-Confined Graphene Quantum Dots for Ultrasensitive Electrochemical Analysis of Complex Samples. ACS Nano, 2018, 12, 12673-12681.	14.6	129
46	Facile preparation of N-doped graphene quantum dots as quick-dry fluorescent ink for anti-counterfeiting. New Journal of Chemistry, 2018, 42, 17091-17095.	2.8	41
47	Highly Efficient Photoâ€Reduction of <i>p</i> â€Nitrophenol by Protonated Graphitic Carbon Nitride Nanosheets. ChemCatChem, 2018, 10, 4747-4754.	3.7	39
48	Enhanced charge separation ability and visible light photocatalytic performance of graphitic carbon nitride by binary S, B co-doping. Materials Research Bulletin, 2018, 107, 477-483.	5.2	39
49	Graphene quantum dots-assisted exfoliation of graphitic carbon nitride to prepare metal-free zero-dimensional/two-dimensional composite photocatalysts. Journal of Materials Science, 2018, 53, 12103-12114.	3.7	49
50	Facile and scalable preparation of highly luminescent N,S co-doped graphene quantum dots and their application for parallel detection of multiple metal ions. Journal of Materials Chemistry B, 2017, 5, 6593-6600.	5.8	106
51	N-doped mesoporous carbon by a hard-template strategy associated with chemical activation and its enhanced supercapacitance performance. Electrochimica Acta, 2017, 238, 269-277.	5.2	71
52	Preparation of biomass-activated porous carbons derived from torreya grandis shell for high-performance supercapacitor. Journal of Solid State Electrochemistry, 2017, 21, 2241-2249.	2.5	35
53	Graphene Quantum Dots Decorated Titania Nanosheets Heterojunction: Efficient Charge Separation and Enhanced Visibleâ€Light Photocatalytic Performance. ChemCatChem, 2017, 9, 3349-3357.	3.7	40
54	lonic liquid-capped graphene quantum dots as label-free fluorescent probe for direct detection of ferricyanide. Talanta, 2017, 165, 429-435.	5.5	28

#	Article	IF	CITATIONS
55	Thermo-driven catalytic degradation of organic dyes by graphitic carbon nitride with hydrogen peroxide. Powder Technology, 2017, 308, 114-122.	4.2	10
56	Preparation of 2D graphitic carbon nitride nanosheets by a green exfoliation approach and the enhanced photocatalytic performance. Journal of Materials Science, 2017, 52, 13091-13102.	3.7	92
57	Sweet graphene quantum dots for imaging carbohydrate receptors in live cells. FlatChem, 2017, 5, 25-32.	5.6	46
58	Fabrication of metal-free two dimensional/two dimensional homojunction photocatalyst using various carbon nitride nanosheets as building blocks. Journal of Colloid and Interface Science, 2017, 507, 209-216.	9.4	49
59	One-step template/chemical blowing route to synthesize flake-like porous carbon nitride photocatalyst. Materials Research Bulletin, 2017, 94, 423-427.	5.2	36
60	Enhanced electrochemical performance of straw-based porous carbon fibers for supercapacitor. Journal of Solid State Electrochemistry, 2017, 21, 3449-3458.	2.5	18
61	Facile synthesis of sulfur-doped graphene quantum dots as fluorescent sensing probes for Ag+ ions detection. Sensors and Actuators B: Chemical, 2017, 242, 231-237.	7.8	194
62	One-pot synthesis of sulfur-doped graphene quantum dots as a novel fluorescent probe for highly selective and sensitive detection of lead(<scp>ii</scp>). RSC Advances, 2016, 6, 69977-69983.	3.6	93
63	Nitrogen-rich graphitic carbon nitride: Controllable nanosheet-like morphology, enhanced visible light absorption and superior photocatalytic performance. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 508, 257-264.	4.7	94
64	Mussel-inspired fabrication of novel superhydrophobic and superoleophilic sponge modified using a high density of nanoaggregates at low concentration of dopamine. RSC Advances, 2016, 6, 71905-71912.	3.6	20
65	Synthesis and application of ternary photocatalyst with a gradient band structure from two-dimensional nanosheets as precursors. RSC Advances, 2016, 6, 108955-108963.	3.6	18
66	The enhanced photocatalytic performance of Z-scheme two-dimensional/two-dimensional heterojunctions from graphitic carbon nitride nanosheets and titania nanosheets. Journal of Colloid and Interface Science, 2016, 478, 263-270.	9.4	42
67	Label-free electrochemical aptasensor constructed by layer-by-layer technology for sensitive and selective detection of cancer cells. Analytica Chimica Acta, 2015, 882, 32-37.	5.4	43
68	Mimetic biomembrane–AuNPs–graphene hybrid as matrix for enzyme immobilization and bioelectrocatalysis study. Talanta, 2015, 143, 438-441.	5.5	27
69	Mussel-inspired biopolymer modified 3D graphene foam for enzyme immobilization and high performance biosensor. Electrochimica Acta, 2015, 161, 17-22.	5.2	37
70	A reagentless electrochemical immunosensor based on probe immobilization and the layer-by-layer assembly technique for sensitive detection of tumor markers. Analytical Methods, 2015, 7, 9655-9662.	2.7	9
71	Three-dimensional electrochemical immunosensor for sensitive detection of carcinoembryonic antigen based on monolithic and macroporous graphene foam. Biosensors and Bioelectronics, 2015, 65, 281-286.	10.1	146
72	Functionalization of Monolithic and Porous Three-Dimensional Graphene by One-Step Chitosan Electrodeposition for Enzymatic Biosensor. ACS Applied Materials & Interfaces, 2014, 6, 19997-20002.	8.0	95

#	Article	IF	CITATIONS
73	Solvothermal synthesis and enhanced visible light photocatalytic activity of novel graphitic carbon nitride–Bi 2 MoO 6 heterojunctions. Powder Technology, 2014, 267, 126-133.	4.2	67
74	Graphitic carbon nitride/Cu2O heterojunctions: Preparation, characterization, and enhanced photocatalytic activity under visible light. Journal of Solid State Chemistry, 2014, 212, 1-6.	2.9	78
75	SO3H-functionalized mesoporous carbon/silica composite with a spherical morphology and its excellent catalytic performance for biodiesel production. Journal of Porous Materials, 2013, 20, 1423-1431.	2.6	5
76	Magnetically separable porous carbon nanospheres as solid acid catalysts. RSC Advances, 2013, 3, 20999.	3.6	31
77	A simple and rapid electrochemical strategy for non-invasive, sensitive and specific detection of cancerous cell. Talanta, 2013, 104, 122-127.	5.5	21
78	Highly sensitive and selective detection of cancer cell with a label-free electrochemical cytosensor. Biosensors and Bioelectronics, 2013, 41, 436-441.	10.1	93
79	Enzyme Immobilization and Direct Electrochemistry Based on a New Matrix of Phospholipidâ€Monolayerâ€Functionalized Graphene. Chemistry - an Asian Journal, 2012, 7, 2824-2829.	3.3	22
80	An electrochemical aptasensor for chiral peptide detection using layer-by-layer assembly of polyelectrolyte-methylene blue/polyelectrolyte-graphene multilayer. Analytica Chimica Acta, 2012, 712, 127-131.	5.4	49
81	Multiple pH-responsive graphene composites by non-covalent modification with chitosan. Talanta, 2012, 101, 151-156.	5.5	28
82	Synthesis of phospholipid monolayer membrane functionalized graphene for drug delivery. Journal of Materials Chemistry, 2012, 22, 20634.	6.7	58
83	SERS imaging for label-free detection of the phospholipids distribution in hybrid lipid membrane. Science China Chemistry, 2011, 54, 1334-1341.	8.2	6
84	A new method for studying the interaction between chlorpromazine and phospholipid bilayer. Biochemical and Biophysical Research Communications, 2008, 373, 202-205.	2.1	15