
## Xiuling Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8951624/publications.pdf Version: 2024-02-01



XIIIINCLI

| #  | Article                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling. Science, 2015, 347, 154-159.                                                                         | 6.0  | 745       |
| 2  | Printing, folding and assembly methods for forming 3D mesostructures in advanced materials. Nature<br>Reviews Materials, 2017, 2, .                                                                         | 23.3 | 463       |
| 3  | Metal assisted chemical etching for high aspect ratio nanostructures: A review of characteristics and applications in photovoltaics. Current Opinion in Solid State and Materials Science, 2012, 16, 71-81. | 5.6  | 362       |
| 4  | Enhancement-mode Ga2O3 wrap-gate fin field-effect transistors on native (100) <i>β</i> -Ga2O3 substrate<br>with high breakdown voltage. Applied Physics Letters, 2016, 109, .                               | 1.5  | 298       |
| 5  | Morphable 3D mesostructures and microelectronic devices by multistable buckling mechanics. Nature<br>Materials, 2018, 17, 268-276.                                                                          | 13.3 | 297       |
| 6  | Metal-catalyzed semiconductor nanowires: a review on the control of growth directions.<br>Semiconductor Science and Technology, 2010, 25, 024005.                                                           | 1.0  | 219       |
| 7  | Nonlithographic Patterning and Metal-Assisted Chemical Etching for Manufacturing of Tunable<br>Light-Emitting Silicon Nanowire Arrays. Nano Letters, 2010, 10, 1582-1588.                                   | 4.5  | 201       |
| 8  | Planar GaAs Nanowires on GaAs (100) Substrates: Self-Aligned, Nearly Twin-Defect Free, and<br>Transfer-Printable. Nano Letters, 2008, 8, 4421-4427.                                                         | 4.5  | 176       |
| 9  | ln <sub><i>x</i></sub> Ga <sub>1-<i>x</i></sub> As Nanowires on Silicon: One-Dimensional<br>Heterogeneous Epitaxy, Bandgap Engineering, and Photovoltaics. Nano Letters, 2011, 11, 4831-4838.               | 4.5  | 133       |
| 10 | Strain induced semiconductor nanotubes: from formation process to device applications. Journal<br>Physics D: Applied Physics, 2008, 41, 193001.                                                             | 1.3  | 124       |
| 11 | Thermal conductivity of silicon nanowire arrays with controlled roughness. Journal of Applied Physics, 2012, 112, .                                                                                         | 1.1  | 120       |
| 12 | Geometry Effect on the Strain-Induced Self-Rolling of Semiconductor Membranes. Nano Letters, 2010,<br>10, 3927-3932.                                                                                        | 4.5  | 119       |
| 13 | Formation of High Aspect Ratio GaAs Nanostructures with Metal-Assisted Chemical Etching. Nano<br>Letters, 2011, 11, 5259-5263.                                                                              | 4.5  | 119       |
| 14 | Porosity control in metal-assisted chemical etching of degenerately doped silicon nanowires.<br>Nanotechnology, 2012, 23, 305304.                                                                           | 1.3  | 118       |
| 15 | In-plane bandgap control in porous GaN through electroless wet chemical etching. Applied Physics<br>Letters, 2002, 80, 980-982.                                                                             | 1.5  | 102       |
| 16 | ln <sub><i>x</i></sub> Ga <sub>1–<i>x</i></sub> As Nanowire Growth on Graphene: van der Waals<br>Epitaxy Induced Phase Segregation. Nano Letters, 2013, 13, 1153-1161.                                      | 4.5  | 101       |
| 17 | On-Chip Inductors with Self-Rolled-Up SiN <sub><i>x</i></sub> Nanomembrane Tubes: A Novel Design<br>Platform for Extreme Miniaturization. Nano Letters, 2012, 12, 6283-6288.                                | 4.5  | 91        |
| 18 | Toward Intelligent Synthetic Neural Circuits: Directing and Accelerating Neuron Cell Growth by Self-Rolled-Up Silicon Nitride Microtube Array. ACS Nano, 2014, 8, 11108-11117.                              | 7.3  | 87        |

| #  | Article                                                                                                                                                                                       | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Monolithic IIIâ€V Nanowire Solar Cells on Graphene via Direct van der Waals Epitaxy. Advanced<br>Materials, 2014, 26, 3755-3760.                                                              | 11.1 | 86        |
| 20 | Inverse Metal-Assisted Chemical Etching Produces Smooth High Aspect Ratio InP Nanostructures.<br>Nano Letters, 2015, 15, 641-648.                                                             | 4.5  | 71        |
| 21 | Three-dimensional radio-frequency transformers based on a self-rolled-up membrane platform. Nature<br>Electronics, 2018, 1, 305-313.                                                          | 13.1 | 71        |
| 22 | Self-rolled-up microtube ring resonators: a review of geometrical and resonant properties. Advances in Optics and Photonics, 2011, 3, 366.                                                    | 12.1 | 66        |
| 23 | III-V Junctionless Gate-All-Around Nanowire MOSFETs for High Linearity Low Power Applications. IEEE<br>Electron Device Letters, 2014, 35, 324-326.                                            | 2.2  | 66        |
| 24 | High Aspect Ratio β-Ga <sub>2</sub> O <sub>3</sub> Fin Arrays with Low-Interface Charge Density by<br>Inverse Metal-Assisted Chemical Etching. ACS Nano, 2019, 13, 8784-8792.                 | 7.3  | 57        |
| 25 | 3D hierarchical architectures based on self-rolled-up silicon nitride membranes. Nanotechnology, 2013, 24, 475301.                                                                            | 1.3  | 56        |
| 26 | Ultra-Small, High-Frequency and Substrate-Immune Microtube Inductors Transformed from 2D to 3D.<br>Scientific Reports, 2015, 5, 9661.                                                         | 1.6  | 56        |
| 27 | High-Speed Planar GaAs Nanowire Arrays with <i>f</i> <sub>max</sub> > 75 GHz by Wafer-Scale<br>Bottom-up Growth. Nano Letters, 2015, 15, 2780-2786.                                           | 4.5  | 56        |
| 28 | Precision Structural Engineering of Self-Rolled-up 3D Nanomembranes Guided by Transient<br>Quasi-Static FEM Modeling. Nano Letters, 2014, 14, 6293-6297.                                      | 4.5  | 55        |
| 29 | GaAs MESFET With a High-Mobility Self-Assembled Planar Nanowire Channel. IEEE Electron Device<br>Letters, 2009, 30, 593-595.                                                                  | 2.2  | 54        |
| 30 | Selfâ€Folded Gripperâ€Like Architectures from Stimuliâ€Responsive Bilayers. Advanced Materials, 2018, 30,<br>e1801669.                                                                        | 11.1 | 53        |
| 31 | GaAs pillar array-based light emitting diodes fabricated by metal-assisted chemical etching. Journal of<br>Applied Physics, 2013, 114, .                                                      | 1.1  | 51        |
| 32 | III–V Nanowire Transistors for Low-Power Logic Applications: A Review and Outlook. IEEE<br>Transactions on Electron Devices, 2016, 63, 223-234.                                               | 1.6  | 51        |
| 33 | Enhanced Performance of Ge Photodiodes <i>via</i> Monolithic Antireflection Texturing and α-Ge<br>Self-Passivation by Inverse Metal-Assisted Chemical Etching. ACS Nano, 2018, 12, 6748-6755. | 7.3  | 50        |
| 34 | Wafer-Scale Production of Uniform InAs <sub><i>y</i></sub> P <sub>1–<i>y</i></sub> Nanowire Array on Silicon for Heterogeneous Integration. ACS Nano, 2013, 7, 5463-5471.                     | 7.3  | 49        |
| 35 | Site-Controlled VLS Growth of Planar Nanowires: Yield and Mechanism. Nano Letters, 2014, 14, 6836-6841.                                                                                       | 4.5  | 49        |
| 36 | Doubling the Power Output of Bifacial Thinâ€Film GaAs Solar Cells by Embedding Them in Luminescent<br>Waveguides. Advanced Energy Materials, 2013, 3, 991-996.                                | 10.2 | 47        |

| #  | Article                                                                                                                                                                                                | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Experimental Study of Design Parameters in Silicon Micropillar Array Solar Cells Produced by Soft<br>Lithography and Metal-Assisted Chemical Etching. IEEE Journal of Photovoltaics, 2012, 2, 129-133. | 1.5  | 46        |
| 38 | Tuning the photoluminescence characteristics with curvature for rolled-up GaAs quantum well microtubes. Applied Physics Letters, 2010, 96, .                                                           | 1.5  | 42        |
| 39 | Controlled Assembly and Dispersion of Strain-Induced InGaAs/GaAs Nanotubes. IEEE Nanotechnology<br>Magazine, 2008, 7, 493-495.                                                                         | 1.1  | 41        |
| 40 | Device Architectures for Enhanced Photon Recycling in Thinâ€Film Multijunction Solar Cells. Advanced<br>Energy Materials, 2015, 5, 1400919.                                                            | 10.2 | 41        |
| 41 | Transfer-Printing of Tunable Porous Silicon Microcavities with Embedded Emitters. ACS Photonics, 2014, 1, 1144-1150.                                                                                   | 3.2  | 39        |
| 42 | Damage-Free Smooth-Sidewall InGaAs Nanopillar Array by Metal-Assisted Chemical Etching. ACS Nano, 2017, 11, 10193-10205.                                                                               | 7.3  | 36        |
| 43 | Nanoscale groove textured β-Ga2O3 by room temperature inverse metal-assisted chemical etching and photodiodes with enhanced responsivity. Applied Physics Letters, 2018, 113, .                        | 1.5  | 36        |
| 44 | Photonic crystal membrane reflectors by magnetic field-guided metal-assisted chemical etching.<br>Applied Physics Letters, 2013, 103, .                                                                | 1.5  | 35        |
| 45 | Monolithic mtesla-level magnetic induction by self-rolled-up membrane technology. Science Advances, 2020, 6, eaay4508.                                                                                 | 4.7  | 35        |
| 46 | Relationship between planar GaAs nanowire growth direction and substrate orientation.<br>Nanotechnology, 2013, 24, 035304.                                                                             | 1.3  | 34        |
| 47 | Evidences for redox reaction driven charge transfer and mass transport in metal-assisted chemical etching of silicon. Scientific Reports, 2016, 6, 36582.                                              | 1.6  | 34        |
| 48 | Monolithic Barrier-All-Around High Electron Mobility Transistor with Planar GaAs Nanowire<br>Channel. Nano Letters, 2013, 13, 2548-2552.                                                               | 4.5  | 33        |
| 49 | Monolithically integrated self-rolled-up microtube-based vertical coupler for three-dimensional photonic integration. Applied Physics Letters, 2015, 107, .                                            | 1.5  | 33        |
| 50 | Minimizing Isolate Catalyst Motion in Metal-Assisted Chemical Etching for Deep Trenching of Silicon<br>Nanohole Array. ACS Applied Materials & Interfaces, 2017, 9, 20981-20990.                       | 4.0  | 33        |
| 51 | Mechanicallyâ€Guided Deterministic Assembly of 3D Mesostructures Assisted by Residual Stresses.<br>Small, 2017, 13, 1700151.                                                                           | 5.2  | 32        |
| 52 | Realization of Unidirectional Planar GaAs Nanowires on GaAs (110) Substrates. IEEE Electron Device<br>Letters, 2012, 33, 522-524.                                                                      | 2.2  | 31        |
| 53 | Ultra-High Aspect Ratio InP Junctionless FinFETs by a Novel Wet Etching Method. IEEE Electron Device<br>Letters, 2016, 37, 970-973.                                                                    | 2.2  | 31        |
| 54 | Laterally confined photonic crystal surface emitting laser incorporating monolayer tungsten disulfide. Npj 2D Materials and Applications, 2019, 3, .                                                   | 3.9  | 31        |

| #  | Article                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Nanoscale three dimensional pattern formation in light emitting porous silicon. Applied Physics<br>Letters, 2008, 92, .                                                                                                        | 1.5  | 30        |
| 56 | Scalable Monolithically Grown AlGaAs–GaAs Planar Nanowire High-Electron-Mobility Transistor. IEEE<br>Electron Device Letters, 2011, 32, 1227-1229.                                                                             | 2.2  | 30        |
| 57 | Anisotropic Rolling and Controlled Chirality of Nanocrystalline Diamond Nanomembranes toward<br>Biomimetic Helical Frameworks. Nano Letters, 2018, 18, 3688-3694.                                                              | 4.5  | 30        |
| 58 | Evolution of GaAs nanowire geometry in selective area epitaxy. Applied Physics Letters, 2015, 106, .                                                                                                                           | 1.5  | 28        |
| 59 | CMOS-Compatible Catalyst for MacEtch: Titanium Nitride-Assisted Chemical Etching in Vapor phase for<br>High Aspect Ratio Silicon Nanostructures. ACS Applied Materials & Interfaces, 2019, 11, 27371-27377.                    | 4.0  | 28        |
| 60 | Kirigamiâ€Inspired Selfâ€Assembly of 3D Structures. Advanced Functional Materials, 2020, 30, 1909888.                                                                                                                          | 7.8  | 28        |
| 61 | Self-Anchored Catalyst Interface Enables Ordered Via Array Formation from Submicrometer to<br>Millimeter Scale for Polycrystalline and Single-Crystalline Silicon. ACS Applied Materials &<br>Interfaces, 2018, 10, 9116-9122. | 4.0  | 26        |
| 62 | Direct Electrical Probing of Periodic Modulation of Zinc-Dopant Distributions in Planar Gallium<br>Arsenide Nanowires. ACS Nano, 2017, 11, 1530-1539.                                                                          | 7.3  | 25        |
| 63 | Scaling the Aspect Ratio of Nanoscale Closely Packed Silicon Vias by MacEtch: Kinetics of Carrier<br>Generation and Mass Transport. Advanced Functional Materials, 2017, 27, 1605614.                                          | 7.8  | 23        |
| 64 | A review of III–V planar nanowire arrays: selective lateral VLS epitaxy and 3D transistors. Journal<br>Physics D: Applied Physics, 2017, 50, 393001.                                                                           | 1.3  | 22        |
| 65 | Producing Silicon Carbide Micro and Nanostructures by Plasmaâ€Free Metalâ€Assisted Chemical Etching.<br>Advanced Functional Materials, 2021, 31, 2103298.                                                                      | 7.8  | 22        |
| 66 | Wet etch, dry etch, and MacEtch of β-Ga2O3: A review of characteristics and mechanism. Journal of<br>Materials Research, 2021, 36, 4756-4770.                                                                                  | 1.2  | 22        |
| 67 | Enhanced Optical Transmission through MacEtchâ€Fabricated Buried Metal Gratings. Advanced<br>Materials, 2016, 28, 1441-1448.                                                                                                   | 11.1 | 21        |
| 68 | A Distributive-Transconductance Model for Border Traps in Ill–V/High-k MOS Capacitors. IEEE Electron<br>Device Letters, 2013, 34, 735-737.                                                                                     | 2.2  | 20        |
| 69 | Colloidal Metal–Organic Framework Hexapods Prepared from Postsynthesis Etching with Enhanced<br>Catalytic Activity and Rollable Packing. ACS Applied Materials & Interfaces, 2018, 10, 40990-40995.                            | 4.0  | 20        |
| 70 | Fabrication of arbitrarily shaped silicon and silicon oxide nanostructures using tip-based<br>nanofabrication. Journal of Vacuum Science and Technology B:Nanotechnology and<br>Microelectronics, 2013, 31, 06FJ01.            | 0.6  | 19        |
| 71 | Monolithic Heterogeneous Integration of 3D Radio Frequency Lâ^'C Elements by Selfâ€Rolledâ€Up Membrane<br>Nanotechnology. Advanced Functional Materials, 2020, 30, 2004034.                                                    | 7.8  | 19        |
| 72 | Carbon-doped GaAs single junction solar microcells grown in multilayer epitaxial assemblies. Applied<br>Physics Letters, 2013, 102, 253902.                                                                                    | 1.5  | 17        |

| #  | Article                                                                                                                                                                                   | lF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | InAs Planar Nanowire Gate-All-Around MOSFETs on GaAs Substrates by Selective Lateral Epitaxy. IEEE<br>Electron Device Letters, 2015, 36, 663-665.                                         | 2.2 | 17        |
| 74 | Hybrid Integration of n-MoS <sub>2</sub> /p-GaN Diodes by Quasi-van der Waals Epitaxy. ACS Applied<br>Electronic Materials, 2020, 2, 419-425.                                             | 2.0 | 16        |
| 75 | Monolithic radio frequency SiN <i> <sub>x</sub> </i> self-rolled-up nanomembrane interdigital capacitor modeling and fabrication. Nanotechnology, 2019, 30, 364001.                       | 1.3 | 15        |
| 76 | Nonlocal Time-Resolved Terahertz Spectroscopy in the Near Field. ACS Photonics, 2021, 8, 2904-2911.                                                                                       | 3.2 | 15        |
| 77 | Perturbation of Au-assisted planar GaAs nanowire growth by p-type dopant impurities. Optical<br>Materials Express, 2013, 3, 1687.                                                         | 1.6 | 14        |
| 78 | Low index contrast heterostructure photonic crystal cavities with high quality factors and vertical radiation coupling. Applied Physics Letters, 2018, 112, 141105.                       | 1.5 | 13        |
| 79 | AlGaAs/Si dualâ€junction tandem solar cells by epitaxial liftâ€off and printâ€transferâ€assisted direct<br>bonding. Energy Science and Engineering, 2018, 6, 47-55.                       | 1.9 | 12        |
| 80 | Ultrathin InAs nanowire growth by spontaneous Au nanoparticle spreading on indium-rich surfaces.<br>Nanoscale, 2014, 6, 15293-15300.                                                      | 2.8 | 11        |
| 81 | Direct Observation of Dopants Distribution and Diffusion in GaAs Planar Nanowires with Atom Probe<br>Tomography. ACS Applied Materials & Interfaces, 2016, 8, 26244-26250.                | 4.0 | 11        |
| 82 | Ultrathin Silicon Nanomembrane in a Tubular Geometry for Enhanced Photodetection. Advanced<br>Optical Materials, 2019, 7, 1900823.                                                        | 3.6 | 11        |
| 83 | Homoepitaxial GaN micropillar array by plasma-free photo-enhanced metal-assisted chemical etching.<br>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2021, 39, . | 0.9 | 11        |
| 84 | Sub-100 nm Si nanowire and nano-sheet array formation by MacEtch using a non-lithographic InAs nanowire mask. Nanotechnology, 2012, 23, 305305.                                           | 1.3 | 10        |
| 85 | Enhanced axial confinement in a monolithically integrated self-rolled-up SiNx vertical microring photonic coupler. Applied Physics Letters, 2016, 109, .                                  | 1.5 | 10        |
| 86 | An Analytical Metal Resistance Model and Its Application for Sub-22-nm Metal-Gate CMOS. IEEE<br>Electron Device Letters, 2015, 36, 384-386.                                               | 2.2 | 9         |
| 87 | CMOS-compatible on-chip self-rolled-up inductors for RF/mm-wave applications. , 2017, , .                                                                                                 |     | 9         |
| 88 | Passive wavelength tuning and multichannel photonic coupling using monolithically integrated vertical microresonators on ridge waveguides. Applied Physics Letters, 2018, 112, .          | 1.5 | 9         |
| 89 | Anti-reflective porous Ge by open-circuit and lithography-free metal-assisted chemical etching. Applied Surface Science, 2021, 546, 149083.                                               | 3.1 | 9         |
| 90 | Self-assembled microtubular electrodes for on-chip low-voltage electrophoretic manipulation of charged particles and macromolecules. Microsystems and Nanoengineering, 2022, 8, 27.       | 3.4 | 9         |

| #   | Article                                                                                                                                                                                            | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Self-Rolled-Up Aluminum Nitride-Based 3D Architectures Enabled by Record-High Differential Stress.<br>ACS Applied Materials & Interfaces, 2022, 14, 29014-29024.                                   | 4.0  | 9         |
| 92  | RF Performance of Planar III–V Nanowire-Array Transistors Grown by Vapor–Liquid–Solid Epitaxy. IEEE<br>Electron Device Letters, 2015, 36, 445-447.                                                 | 2.2  | 7         |
| 93  | Downscaling inductors with graphene. Nature Electronics, 2018, 1, 6-7.                                                                                                                             | 13.1 | 6         |
| 94  | Effect of Perforation on the Thermal and Electrical Breakdown of Selfâ€Rolledâ€Up Nanomembrane<br>Structures. Advanced Materials Interfaces, 2019, 6, 1901022.                                     | 1.9  | 6         |
| 95  | High voltage gain MESFET amplifier using self-aligned MOCVD grown planar GaAs nanowires. , 2013, , .                                                                                               |      | 5         |
| 96  | Au-free low-temperature ohmic contacts for AlGaN/AlN/GaN heterostructures. Journal of Vacuum<br>Science and Technology B:Nanotechnology and Microelectronics, 2020, 38, .                          | 0.6  | 5         |
| 97  | Electrically Controlled Nanofluidic DNA Sluice for Data Storage Applications. ACS Applied Nano<br>Materials, 2021, 4, 11063-11069.                                                                 | 2.4  | 5         |
| 98  | Physical Modeling of Monolithic Self-Rolled-Up Microtube Interdigital Capacitors. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2022, 12, 359-367.                      | 1.4  | 5         |
| 99  | Bandstructure Engineering With a 2-D Patterned Quantum Well Superlattice. IEEE Journal of Quantum<br>Electronics, 2011, 47, 417-423.                                                               | 1.0  | 4         |
| 100 | Vertically stacked individually tunable nanowire field effect transistors for low power operation with ultrahigh radio frequency linearity. Applied Physics Letters, 2012, 101, 093509.            | 1.5  | 4         |
| 101 | InAs nanowire gate-all-around MOSFETs by heterogeneous planar VLS growth. , 2015, , .                                                                                                              |      | 3         |
| 102 | Selective Area Heteroepitaxy of p-i-n Junction GaP Nanopillar Arrays on Si (111) by MOCVD. IEEE Journal of Quantum Electronics, 2022, 58, 1-6.                                                     | 1.0  | 3         |
| 103 | Miniaturized on-chip passive devices based on self-rolled-up SiN <inf>x</inf> nanomembrane inductive tube. , 2013, , .                                                                             |      | 2         |
| 104 | Enhancing Performance of GaAs Photodiodes via Monolithic Integration of Selfâ€Formed Graphene<br>Quantum Dots and Antireflection Surface Texturing. Advanced Photonics Research, 2021, 2, 2000134. | 1.7  | 2         |
| 105 | Monolithic lateral p–n junction GaAs nanowire diodes via selective lateral epitaxy. Nanotechnology,<br>2021, 32, 505203.                                                                           | 1.3  | 2         |
| 106 | GaAs FET with a high mobility self-assembled planar nanowire channel on a (100) substrate. , 2009, , .                                                                                             |      | 1         |
| 107 | Nano-electro-mechanical systems fabricated using tip-based nanofabrication. Proceedings of SPIE, 2013,                                                                                             | 0.8  | 1         |
| 108 | Superior neuronal outgrowth guidance and rate enhancement using silicon nitride self-rolled-up                                                                                                     |      | 1         |

membranes. , 2015, , .

| #   | Article                                                                                                                                                                             | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Large area MoS <inf>2</inf> van der Waals epitaxy on III-Ns and the epitaxial formation of a<br>n-MoS <inf>2</inf> /p-InGaN diode. , 2016, , .                                      |      | 1         |
| 110 | Direct Measurement of Directional Emission from Monolayer WS <inf>2</inf> Laser with Heterostructure Photonic Crystal Cavities. , 2018, , .                                         |      | 1         |
| 111 | Elastocapillary Force Induced Alignment of Large Area Planar Nanowires. ACS Applied Materials &<br>Interfaces, 2021, 13, 11177-11184.                                               | 4.0  | 1         |
| 112 | MOCVD Grown III–V Nanowires: In-Plane, self-aligned and transfer-printable. , 2008, , .                                                                                             |      | 0         |
| 113 | 3D nanoscale pattern formation in porous silicon. , 2008, , .                                                                                                                       |      | 0         |
| 114 | Self-aligned planar GaAs nanowires grown by MOCVD on GaAs (100) substrates. , 2008, , .                                                                                             |      | 0         |
| 115 | CaAs ≪110≫ nanowires: Planar, self-aligned, twin-free, high-mobility and transfer-printable. , 2009, , .                                                                            |      | Ο         |
| 116 | Response to comments to "A distributive-transconductance model for border traps in III-V/High-k MOS capacitors". IEEE Electron Device Letters, 2013, 34, 1441-1441.                 | 2.2  | 0         |
| 117 | III-As Pillar Arrays by Metal-Assisted Chemical Etching for Photonic Applications. , 2013, , .                                                                                      |      | 0         |
| 118 | RF performance of 3D III-V nanowire T-Gate HEMTs grown by VLS method. , 2014, , .                                                                                                   |      | 0         |
| 119 | Monolithic integration of the self-rolled-up vertical SiNx ring resonator and the ridge waveguide. , 2015, , .                                                                      |      | 0         |
| 120 | Solar Cells: Device Architectures for Enhanced Photon Recycling in Thin-Film Multijunction Solar<br>Cells (Adv. Energy Mater. 1/2015). Advanced Energy Materials, 2015, 5, n/a-n/a. | 10.2 | 0         |
| 121 | InP FinFETs with damage-free and record high-aspect-ratio (45∶1) fins fabricated by metal-assisted chemical etching. , 2015, , .                                                    |      | Ο         |
| 122 | Optical Transmission: Enhanced Optical Transmission through MacEtchâ€Fabricated Buried Metal<br>Gratings (Adv. Mater. 7/2016). Advanced Materials, 2016, 28, 1440-1440.             | 11.1 | 0         |
| 123 | Enhanced light emission from MoS <inf>2</inf> in heterostructure photonic crystal cavities. , 2017, , .                                                                             |      | 0         |
| 124 | Nano-indented Ge surfaces by metal-assisted chemical etching (MacEtch) and its application for optoelectronic devices. , 2017, , .                                                  |      | 0         |
| 125 | Nanodevices and Applications: My Nonlinear Career Trajectory. Women in Engineering and Science, 2020, , 79-88.                                                                      | 0.2  | 0         |
| 126 | Buried Extraordinary Optical Transmission. , 2016, , .                                                                                                                              |      | 0         |

Buried Extraordinary Optical Transmission. , 2016, , . 126

| #   | Article                                                                                                                                                                    | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Germanium photodiodes on pyramidal textured surface by Metal-Assisted Chemical Etching. , 2019, , .                                                                        |     | о         |
| 128 | Position Control of Self-Grown III–V Nanowire Arrays on Si Substrates via Micrometer-Size Patterns<br>by Photolithography. Crystal Growth and Design, 2022, 22, 2266-2271. | 1.4 | 0         |