Kat J Bormann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8951230/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Paths to research-driven decision making in the realms of environment and water. Technology in Society, 2022, 70, 101994.	4.8	2
2	Evaluation of VIIRS and MODIS Snow Cover Fraction in High-Mountain Asia Using Landsat 8 OLI. Frontiers in Remote Sensing, 2021, 2, .	1.3	16
3	Multi-sensor fusion using random forests for daily fractional snow cover at 30Âm. Remote Sensing of Environment, 2021, 264, 112608.	4.6	29
4	Quantifying the Spatial Variability of a Snowstorm Using Differential Airborne Lidar. Water Resources Research, 2020, 56, e2019WR025331.	1.7	11
5	From Drought to Flood: A Water Balance Analysis of the Tuolumne River Basin during Extreme Conditions (2015 – 2017). Hydrological Processes, 2020, 34, 2560.	1.1	10
6	Dust dominates high-altitude snow darkening and melt over high-mountain Asia. Nature Climate Change, 2020, 10, 1045-1051.	8.1	101
7	Impact of light-absorbing particles on snow albedo darkening and associated radiative forcing over high-mountain Asia: high-resolution WRF-Chem modeling and new satellite observations. Atmospheric Chemistry and Physics, 2019, 19, 7105-7128.	1.9	46
8	Comparing Aerial Lidar Observations With Terrestrial Lidar and Snowâ€Probe Transects From NASA's 2017 SnowEx Campaign. Water Resources Research, 2019, 55, 6285-6294.	1.7	49
9	Watershed-scale mapping of fractional snow cover under conifer forest canopy using lidar. Remote Sensing of Environment, 2019, 222, 34-49.	4.6	33
10	A High-Resolution Data Assimilation Framework for Snow Water Equivalent Estimation across the Western United States and Validation with the Airborne Snow Observatory. Journal of Hydrometeorology, 2019, 20, 357-378.	0.7	24
11	Highâ€Elevation Evapotranspiration Estimates During Drought: Using Streamflow and NASA Airborne Snow Observatory SWE Observations to Close the Upper Tuolumne River Basin Water Balance. Water Resources Research, 2018, 54, 746-766.	1.7	24
12	Ecosystem responses to elevated CO ₂ using airborne remote sensing at Mammoth Mountain, California. Biogeosciences, 2018, 15, 7403-7418.	1.3	7
13	Fusion of Multiple Low-Resolution NASA Airborne Snow Observatory (ASO) Lidar Data for Forest Vegetation Structure Caracterization. , 2018, , .		0
14	Direct Insertion of NASA Airborne Snow Observatoryâ€Derived Snow Depth Time Series Into the <i>iSnobal</i> Energy Balance Snow Model. Water Resources Research, 2018, 54, 8045-8063.	1.7	62
15	Estimating snow-cover trends from space. Nature Climate Change, 2018, 8, 924-928.	8.1	218
16	Using the Airborne Snow Observatory to Assess Remotely Sensed Snowfall Products in the California Sierra Nevada. Water Resources Research, 2018, 54, 7331-7346.	1.7	22
17	Fusion of NASA Airborne Snow Observatory (ASO) Lidar Time Series over Mountain Forest Landscapes. Remote Sensing, 2018, 10, 164.	1.8	14
18	Mapping Snow Depth From Ka-Band Interferometry: Proof of Concept and Comparison With Scanning Lidar Retrievals. IEEE Geoscience and Remote Sensing Letters, 2017, 14, 886-890.	1.4	25

Kat J Bormann

#	Article	IF	CITATIONS
19	Mapping snow-depth using KA-band InSAR: Calibration and validation during SnowEx. , 2017, , .		0
20	The airborne snow observatory during NASA snow experiment (SnowEx) year 1: Mapping of snow water equivalent and snow albedo and constraining understanding of the physical environment. , 2017, , .		0
21	The Airborne Snow Observatory: Fusion of scanning lidar, imaging spectrometer, and physically-based modeling for mapping snow water equivalent and snow albedo. Remote Sensing of Environment, 2016, 184, 139-152.	4.6	313
22	Regional climate model projections of the South Pacific Convergence Zone. Climate Dynamics, 2016, 47, 817-829.	1.7	16
23	Temperature response to future urbanization and climate change. Climate Dynamics, 2014, 42, 2183-2199.	1.7	218
24	Constraining snowmelt in a temperature-index model using simulated snow densities. Journal of Hydrology, 2014, 517, 652-667.	2.3	25
25	Spatial and temporal variability in seasonal snow density. Journal of Hydrology, 2013, 484, 63-73.	2.3	94
26	Satellite based observations for seasonal snow cover detection and characterisation in Australia. Remote Sensing of Environment, 2012, 123, 57-71.	4.6	40