
Robert A Heinzen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/895084/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Coxiella burnetii Sterol-Modifying Protein Stmp1 Regulates Cholesterol in the Intracellular Niche. MBio, 2022, 13, e0307321.	1.8	6
2	A Comprehensive Phenotypic Screening Strategy to Identify Modulators of Cargo Translocation by the Bacterial Type IVB Secretion System. MBio, 2022, 13, e0024022.	1.8	3
3	β-Barrel proteins tether the outer membrane in many Gram-negative bacteria. Nature Microbiology, 2021, 6, 19-26.	5.9	46
4	Contributions of lipopolysaccharide and the type IVB secretion system to Coxiella burnetii vaccine efficacy and reactogenicity. Npj Vaccines, 2021, 6, 38.	2.9	22
5	Dependency of <i>Coxiella burnetii</i> Type 4B Secretion on the Chaperone IcmS. Journal of Bacteriology, 2019, 201, .	1.0	9
6	Comparative virulence of diverse <i>Coxiella burnetii</i> strains. Virulence, 2019, 10, 133-150.	1.8	41
7	Noncanonical Inhibition of mTORC1 by Coxiella burnetii Promotes Replication within a Phagolysosome-Like Vacuole. MBio, 2019, 10, .	1.8	20
8	<i>Coxiella burnetii</i> RpoS Regulates Genes Involved in Morphological Differentiation and Intracellular Growth. Journal of Bacteriology, 2019, 201, .	1.0	33
9	Replication of Coxiella burnetii in a Lysosome-Like Vacuole Does Not Require Lysosomal Hydrolases. Infection and Immunity, 2019, 87, .	1.0	8
10	A Coxiella burnetii phospholipase A homolog pldA is required for optimal growth in macrophages and developmental form lipid remodeling. BMC Microbiology, 2018, 18, 33.	1.3	13
11	Actin polymerization in the endosomal pathway, but not on the Coxiella-containing vacuole, is essential for pathogen growth. PLoS Pathogens, 2018, 14, e1007005.	2.1	16
12	Genetic mechanisms of Coxiella burnetii lipopolysaccharide phase variation. PLoS Pathogens, 2018, 14, e1006922.	2.1	60
13	Elevated Cholesterol in the <i>Coxiella burnetii</i> Intracellular Niche Is Bacteriolytic. MBio, 2017, 8, .	1.8	44
14	Whole-Genome Sequence of Coxiella burnetii Nine Mile RSA439 (Phase II, Clone 4), a Laboratory Workhorse Strain. Genome Announcements, 2017, 5, .	0.8	24
15	Draft Genome Sequences of Historical Strains of Coxiella burnetii Isolated from Cow's Milk and a Goat Placenta. Genome Announcements, 2017, 5, .	0.8	4
16	Draft Genome Sequences of Three Coxiella burnetii Strains Isolated from Q Fever Patients. Genome Announcements, 2017, 5, .	0.8	2
17	Interactions between the <i>Coxiella burnetii</i> parasitophorous vacuole and the endoplasmic reticulum involve the host protein ORP1L. Cellular Microbiology, 2017, 19, e12637.	1.1	38
18	Draft Genome Sequences of the Avirulent Coxiella burnetii Dugway 7D77-80 and Dugway 7E65-68 Strains Isolated from Rodents in Dugway, Utah. Genome Announcements, 2017, 5, .	0.8	7

#	Article	IF	CITATIONS
19	High-Content Imaging Reveals Expansion of the Endosomal Compartment during Coxiella burnetii Parasitophorous Vacuole Maturation. Frontiers in Cellular and Infection Microbiology, 2017, 7, 48.	1.8	23
20	Robust growth of avirulent phase II Coxiella burnetii in bone marrow-derived murine macrophages. PLoS ONE, 2017, 12, e0173528.	1.1	14
21	Transcriptional Profiling of Coxiella burnetii Reveals Extensive Cell Wall Remodeling in the Small Cell Variant Developmental Form. PLoS ONE, 2016, 11, e0149957.	1.1	50
22	Complementation of Arginine Auxotrophy for Genetic Transformation of Coxiella burnetii by Use of a Defined Axenic Medium. Applied and Environmental Microbiology, 2016, 82, 3042-3051.	1.4	64
23	Right on Q: genetics begin to unravel <i>Coxiella burnetii</i> host cell interactions. Future Microbiology, 2016, 11, 919-939.	1.0	84
24	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
25	Vasodilator-Stimulated Phosphoprotein Activity Is Required for Coxiella burnetii Growth in Human Macrophages. PLoS Pathogens, 2016, 12, e1005915.	2.1	11
26	Coxiella burnetii Effector Proteins That Localize to the Parasitophorous Vacuole Membrane Promote Intracellular Replication. Infection and Immunity, 2015, 83, 661-670.	1.0	79
27	Essential Role for the Response Regulator PmrA in Coxiella burnetii Type 4B Secretion and Colonization of Mammalian Host Cells. Journal of Bacteriology, 2014, 196, 1925-1940.	1.0	43
28	Developmental transitions of Coxiella burnetii grown in axenic media. Journal of Microbiological Methods, 2014, 96, 104-110.	0.7	43
29	Gene Inactivation in Coxiella burnetii. Methods in Molecular Biology, 2014, 1197, 329-345.	0.4	30
30	Sec-mediated secretion by Coxiella burnetii. BMC Microbiology, 2013, 13, 222.	1.3	25
31	Bacterial Colonization of Host Cells in the Absence of Cholesterol. PLoS Pathogens, 2013, 9, e1003107.	2.1	55
32	Bringing Culture to the Uncultured: Coxiella burnetii and Lessons for Obligate Intracellular Bacterial Pathogens. PLoS Pathogens, 2013, 9, e1003540.	2.1	28
33	<i>Coxiella burnetii</i> effector protein subverts clathrin-mediated vesicular trafficking for pathogen vacuole biogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4770-9.	3.3	85
34	The Coxiella burnetii Parasitophorous Vacuole. Advances in Experimental Medicine and Biology, 2012, 984, 141-169.	0.8	37
35	Two Systems for Targeted Gene Deletion in Coxiella burnetii. Applied and Environmental Microbiology, 2012, 78, 4580-4589.	1.4	99
36	Life on the Outside: The Rescue ofCoxiella burnetiifrom Its Host Cell. Annual Review of Microbiology, 2011. 65. 111-128.	2.9	52

#	Article	IF	CITATIONS
37	Advances in Genetic Manipulation of Obligate Intracellular Bacterial Pathogens. Frontiers in Microbiology, 2011, 2, 97.	1.5	79
38	Rapid Typing of Coxiella burnetii. PLoS ONE, 2011, 6, e26201.	1.1	76
39	Isolation from Animal Tissue and Genetic Transformation of Coxiella burnetii Are Facilitated by an Improved Axenic Growth Medium. Applied and Environmental Microbiology, 2011, 77, 3720-3725.	1.4	191
40	The <i>Coxiella burnetii</i> Cryptic Plasmid Is Enriched in Genes Encoding Type IV Secretion System Substrates. Journal of Bacteriology, 2011, 193, 1493-1503.	1.0	134
41	Dot/Icm Type IVB Secretion System Requirements for Coxiella burnetii Growth in Human Macrophages. MBio, 2011, 2, e00175-11.	1.8	214
42	<i>Coxiella burnetii</i> Phase I and II Variants Replicate with Similar Kinetics in Degradative Phagolysosome-Like Compartments of Human Macrophages. Infection and Immunity, 2010, 78, 3465-3474.	1.0	140
43	<i>Coxiella burnetii</i> Expresses a Functional Δ24 Sterol Reductase. Journal of Bacteriology, 2010, 192, 6154-6159.	1.0	34
44	Exploring the Cause of Human Q Fever: Recent Advances in Coxiella burnetii Research. , 2010, , 75-85.		0
45	Host–microbe interaction systems biology: lifecycle transcriptomics and comparative genomics. Future Microbiology, 2010, 5, 205-219.	1.0	27
46	Host cell-free growth of the Q fever bacterium <i>Coxiella burnetii</i> . Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4430-4434.	3.3	363
47	Comparative Genomics Reveal Extensive Transposon-Mediated Genomic Plasticity and Diversity among Potential Effector Proteins within the Genus <i>Coxiella</i> . Infection and Immunity, 2009, 77, 642-656.	1.0	197
48	Sustained Activation of Akt and Erk1/2 Is Required for <i>Coxiella burnetii</i> Antiapoptotic Activity. Infection and Immunity, 2009, 77, 205-213.	1.0	88
49	The <i>Coxiella burnetii</i> Ankyrin Repeat Domain-Containing Protein Family Is Heterogeneous, with C-Terminal Truncations That Influence Dot/Icm-Mediated Secretion. Journal of Bacteriology, 2009, 191, 4232-4242.	1.0	137
50	Adaptive immunity to the obligate intracellular pathogen Coxiella burnetii. Immunologic Research, 2009, 43, 138-148.	1.3	65
51	Coxiella type IV secretion and cellular microbiology. Current Opinion in Microbiology, 2009, 12, 74-80.	2.3	66
52	Antibody-mediated immunity to the obligate intracellular bacterial pathogen Coxiella burnetii is Fc receptor- and complement-independent. BMC Immunology, 2009, 10, 26.	0.9	34
53	Characterization of a <i>Coxiella burnetii ftsZ</i> Mutant Generated by <i>Himar1</i> Transposon Mutagenesis. Journal of Bacteriology, 2009, 191, 1369-1381.	1.0	94
54	Infection of Human Monocyte-Derived Macrophages With Coxiella burnetii. , 2008, 431, 189-200.		25

#	Article	IF	CITATIONS
55	A method for purifying obligate intracellular Coxiella burnetii that employs digitonin lysis of host cells. Journal of Microbiological Methods, 2008, 72, 321-325.	0.7	40
56	Candidate Antigens for Q Fever Serodiagnosis Revealed by Immunoscreening of a <i>Coxiella burnetii</i> Protein Microarray. Vaccine Journal, 2008, 15, 1771-1779.	3.2	92
57	Sustained Axenic Metabolic Activity by the Obligate Intracellular Bacterium <i>Coxiella burnetii</i> . Journal of Bacteriology, 2008, 190, 3203-3212.	1.0	71
58	Fractionation of the Coxiella burnetii Parasitophorous Vacuole. Methods in Molecular Biology, 2008, 445, 389-406.	0.4	12
59	Proteome and Antigen Profiling of Coxiella burnetii Developmental Forms. Infection and Immunity, 2007, 75, 290-298.	1.0	80
60	<i>Coxiella burnetii</i> Inhibits Apoptosis in Human THP-1 Cells and Monkey Primary Alveolar Macrophages. Infection and Immunity, 2007, 75, 4263-4271.	1.0	125
61	Efficient Method of Cloning the Obligate Intracellular Bacterium Coxiella burnetii. Applied and Environmental Microbiology, 2007, 73, 4048-4054.	1.4	20
62	Lounging in a lysosome: the intracellular lifestyle of Coxiella burnetii. Cellular Microbiology, 2007, 9, 829-840.	1.1	1,560
63	Coxiella burnetii inhabits a cholesterol-rich vacuole and influences cellular cholesterol metabolism. Cellular Microbiology, 2006, 8, 496-507.	1.1	108
64	Genetic Diversity of the Q Fever Agent, Coxiella burnetii , Assessed by Microarray-Based Whole-Genome Comparisons. Journal of Bacteriology, 2006, 188, 2309-2324.	1.0	122
65	Preliminary Assessment of Genome Differences between the Reference Nine Mile Isolate and Two Human Endocarditis Isolates of Coxiella burnetii. Annals of the New York Academy of Sciences, 2005, 1063, 64-67.	1.8	6
66	Replication of Coxiella burnetii Is Inhibited in CHO K-1 Cells Treated with Inhibitors of Cholesterol Metabolism. Annals of the New York Academy of Sciences, 2005, 1063, 123-129.	1.8	16
67	Lack of Dendritic Cell Maturation Following Infection by Coxiella burnetii Synthesizing Different Lipopolysaccharide Chemotypes. Annals of the New York Academy of Sciences, 2005, 1063, 154-160.	1.8	19
68	Virulent Coxiella burnetii does not activate human dendritic cells: Role of lipopolysaccharide as a shielding molecule. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 8722-8727.	3.3	122
69	Specificity of Legionella pneumophila and Coxiella burnetii Vacuoles and Versatility of Legionella pneumophila Revealed by Coinfection. Infection and Immunity, 2005, 73, 4494-4504.	1.0	55
70	Temporal Analysis of Coxiella burnetii Morphological Differentiation. Journal of Bacteriology, 2004, 186, 7344-7352.	1.0	277
71	A Rickettsia WASP-like protein activates the Arp2/3 complex and mediates actin-based motility. Cellular Microbiology, 2004, 6, 761-769.	1.1	137
72	Maturation of the Coxiella burnetii parasitophorous vacuole requires bacterial protein synthesis but not replication. Cellular Microbiology, 2003, 5, 469-480.	1.1	122

#	Article	IF	CITATIONS
73	Rickettsial Actinâ€Based Motility. Annals of the New York Academy of Sciences, 2003, 990, 535-547.	1.8	58
74	Fusogenicity of the <i>Coxiella burnetii</i> Parasitophorous Vacuole. Annals of the New York Academy of Sciences, 2003, 990, 556-562.	1.8	57
75	Comparative DNA Microarray Analysis of Host Cell Transcriptional Responses to Infection by <i>Coxiella burnetii</i> or <i>Chlamydia trachomatis</i> . Annals of the New York Academy of Sciences, 2003, 990, 701-713.	1.8	54
76	Complete genome sequence of the Q-fever pathogen Coxiella burnetii. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 5455-5460.	3.3	506
77	Intracellular Development of Coxiella burnetii. , 2002, , 99-129.		7
78	Nitric Oxide Inhibits Coxiella burnetii Replication and Parasitophorous Vacuole Maturation. Infection and Immunity, 2002, 70, 5140-5147.	1.0	69
79	Ultrastructure of Rickettsia rickettsii Actin Tails and Localization of Cytoskeletal Proteins. Infection and Immunity, 2000, 68, 4706-4713.	1.0	104
80	Serological Evidence of Human Infection with the Protozoan <i>Neospora caninum</i> . Vaccine Journal, 1999, 6, 765-767.	2.6	101
81	Developmental biology of Coxiella burnetii. Trends in Microbiology, 1999, 7, 149-154.	3.5	181
82	Dynamics of Actin-Based Movement by <i>Rickettsia rickettsii</i> in Vero Cells. Infection and Immunity, 1999, 67, 4201-4207.	1.0	112
83	Murine Q Fever Vaccination Model Reveals Sex Dimorphism in Early Phase Delayed-Type Hypersensitivity Responses. Frontiers in Immunology, 0, 13, .	2.2	1