
Magdalena Piasecka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8950731/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Study of the Onset of Flow Boiling in Minichannels: Time-Dependent Heat Transfer Results. Heat Transfer Engineering, 2022, 43, 223-237.	1.9	6
2	Experimental Study and CFD Modeling of Fluid Flow and Heat Transfer Characteristics in a Mini-Channel Heat Sink Using Simcenter STAR-CCM+ Software. Energies, 2022, 15, 536.	3.1	12
3	Heat Transfer Analysis of a Co-Current Heat Exchanger with Two Rectangular Mini-Channels. Energies, 2022, 15, 1340.	3.1	2
4	Novel Numerical Methods in Heat and Mass Transfer. Energies, 2022, 15, 2635.	3.1	0
5	Conception of minichannel cooling for a PVT heat exchanger. EPJ Web of Conferences, 2022, 264, 01045.	0.3	0
6	Simcenter STAR-CCM+ software for CFD and heat transfer calculations in minichannels. EPJ Web of Conferences, 2022, 264, 01011.	0.3	1
7	Time-Dependent Heat Transfer Calculations with Trefftz and Picard Methods for Flow Boiling in a Mini-Channel Heat Sink. Energies, 2021, 14, 1832.	3.1	8
8	Heat transfer characteristics during flow along horizontal and vertical minichannels. International Journal of Multiphase Flow, 2021, 137, 103559.	3.4	22
9	Characteristics of Refrigerant Boiling Heat Transfer in Rectangular Mini-Channels during Various Flow Orientations. Energies, 2021, 14, 4891.	3.1	9
10	Heat Transfer Coefficient Determination during FC-72 Flow in a Minichannel Heat Sink Using the Trefftz Functions and ADINA Software. Energies, 2020, 13, 6647.	3.1	14
11	The applicability of heat transfer correlations to flows in minichannels and new correlation for subcooled flow boiling. International Journal of Heat and Mass Transfer, 2020, 158, 119933.	4.8	19
12	Numerical Solution of Axisymmetric Inverse Heat Conduction Problem by the Trefftz Method. Energies, 2020, 13, 705.	3.1	10
13	Impact of selected thermal and flow parameters on flow boiling heat transfer in a minichannel. EPJ Web of Conferences, 2019, 213, 02079.	0.3	0
14	Comparison of the 1D and 2D calculation models used for determination of the heat transfer coefficient during flow boiling heat transfer in a minichannel. E3S Web of Conferences, 2019, 128, 01017.	0.5	3
15	Estimating uncertainty of temperature measurements for studies of flow boiling heat transfer in minichannels. EPJ Web of Conferences, 2019, 213, 02059.	0.3	6
16	Cooling liquid flow boiling heat transfer in an annular minigap with an enhanced wall. EPJ Web of Conferences, 2019, 213, 02066.	0.3	7
17	Time-dependent study of boiling heat transfer coefficient in a vertical minichannel. International Journal of Numerical Methods for Heat and Fluid Flow, 2019, 30, 2953-2969.	2.8	12
18	The heat transfer and instabilities results during the onset of flow boiling in minichannels. E3S Web of Conferences, 2019, 128, 01016.	0.5	1

MAGDALENA PIASECKA

#	Article	IF	CITATIONS
19	Influence of the Surface Enhancement on the Flow Boiling Heat Transfer in a Minichannel. Heat Transfer Engineering, 2019, 40, 1162-1175.	1.9	33
20	The solution of a two-dimensional inverse heat transfer problem using two methods. International Journal of Numerical Methods for Heat and Fluid Flow, 2018, 28, 206-219.	2.8	25
21	Spatial orientation as a factor in flow boiling heat transfer of cooling liquids in enhanced surface minichannels. International Journal of Heat and Mass Transfer, 2018, 117, 375-387.	4.8	47
22	The heat transfer coefficient determination with the use of the Beck-Trefftz method in flow boiling in a minichannel. EPJ Web of Conferences, 2018, 180, 02099.	0.3	2
23	Heat transfer coefficient determination using the FEM with time-dependent Trefftz-type basis functions in subcooled flow boiling in a minichannel. MATEC Web of Conferences, 2018, 240, 01024.	0.2	0
24	The application of Fourier transform to the identification of temperature distribution in HFE-7100 flow boiling in an annular minigap. MATEC Web of Conferences, 2018, 240, 01012.	0.2	3
25	Impact of different thickness of the smooth heated surface on flow boiling heat transfer. EPJ Web of Conferences, 2018, 180, 02098.	0.3	4
26	The flow boiling heat transfer coefficient determination in a minichannel used the FEM combined with Trefftz functions. MATEC Web of Conferences, 2018, 240, 01033.	0.2	0
27	Research on flow boiling heat transfer for vertical upward and downward flows along a minichannel with a smooth heated surface. E3S Web of Conferences, 2018, 70, 02014.	0.5	5
28	The study on the efficiency of a photovoltaic cell with a system of supercapacitors and batteries. E3S Web of Conferences, 2018, 70, 01014.	0.5	0
29	Impact of different thickness of the smooth heated surface on flow boiling heat transfer. EPJ Web of Conferences, 2018, 180, 02098.	0.3	0
30	The heat transfer coefficient determination with the use of the Beck-Trefftz method in flow boiling in a minichannel. EPJ Web of Conferences, 2018, 180, 02099.	0.3	0
31	Calculations of Flow Boiling Heat Transfer in a Minichannel Based on Liquid Crystal and Infrared Thermography Data. Heat Transfer Engineering, 2017, 38, 332-346.	1.9	52
32	Modelling of flow boiling heat transfer in a cylindrical annulus mini gap. E3S Web of Conferences, 2017, 13, 02002.	0.5	3
33	A numerical solution to an inverse unsteady-state heat transfer problem involving the Trefftz functions. EPJ Web of Conferences, 2017, 143, 02069.	0.3	0
34	Comparison of FEM calculated heat transfer coefficient in a minichannel using two approaches: Trefftz base functions and ADINA software. EPJ Web of Conferences, 2017, 143, 02070.	0.3	6
35	Boiling heat transfer during flow of distilled water in an asymmetrically heated rectangular minichannel. EPJ Web of Conferences, 2017, 143, 02116.	0.3	4
36	Radial basis functions in mathematical modelling of flow boiling in minichannels. EPJ Web of Conferences, 2017, 143, 02037.	0.3	0

#	Article	IF	CITATIONS
37	Comparison of two surface temperature measurement using thermocouples and infrared camera. EPJ Web of Conferences, 2017, 143, 02075.	0.3	12
38	An application of the non-continuous Trefftz method to the determination of heat transfer coefficient for flow boiling in a minichannel. Heat and Mass Transfer, 2017, 53, 1211-1224.	2.1	38
39	Trefftz function-based thermal solution of inverse problem in unsteady-state flow boiling heat transfer in a minichannel. International Journal of Heat and Mass Transfer, 2017, 107, 925-933.	4.8	51
40	Determination of the temperature distribution in a minichannel using ANSYS CFX and a procedure based on the Trefftz functions. EPJ Web of Conferences, 2017, 143, 02071.	0.3	5
41	Trefftz method in solving Fourier-Kirchhoff equation for two-phase flow boiling in a vertical rectangular minichannel. EPJ Web of Conferences, 2017, 143, 02038.	0.3	1
42	Heat transfer research on enhanced heating surfaces in pool boiling. EPJ Web of Conferences, 2017, 143, 02048.	0.3	3
43	Impact of Fe powder sintering and soldering in production of porous heating surface on flow boiling heat transfer in minichannels. E3S Web of Conferences, 2017, 19, 03012.	0.5	6
44	A study of the flow boiling heat transfer in an annular heat exchanger with a mini gap. EPJ Web of Conferences, 2017, 143, 02077.	0.3	2
45	Determination of the heat transfer coefficient from IRT measurement data using the Trefftz method. EPJ Web of Conferences, 2016, 114, 02068.	0.3	3
46	Numerical calculations of the thermal deformations of the rectangular minichannel walls. EPJ Web of Conferences, 2016, 114, 02096.	0.3	0
47	Heat transfer coefficient for flow boiling in an annular mini gap. EPJ Web of Conferences, 2016, 114, 02042.	0.3	3
48	Effect of the heating surface enhancement on the heat transfer coefficient for a vertical minichannel. EPJ Web of Conferences, 2016, 114, 02095.	0.3	2
49	A study of the flow boiling heat transfer in a minichannel for a heated wall with surface texture produced by vibration-assisted laser machining. Journal of Physics: Conference Series, 2016, 745, 032123.	0.4	4
50	The Solution of a Two-dimensional Inverse Heat Transfer Problem Using the Trefftz Method. Procedia Engineering, 2016, 157, 82-88.	1.2	19
51	Comparison of two methods for contactless surface temperature measurement. EPJ Web of Conferences, 2016, 114, 02094.	0.3	6
52	Analysis of heat transfer coefficient for variable spatial orientation of a minichannel with an enhanced surface at incipience of boiling. EPJ Web of Conferences, 2015, 92, 02068.	0.3	0
53	Impact of selected parameters on the development of boiling and flow resistance in the minichannel. EPJ Web of Conferences, 2015, 92, 02069.	0.3	0
54	Hysteresis of boiling for different tunnel-pore surfaces. EPJ Web of Conferences, 2015, 92, 02060.	0.3	0

MAGDALENA PIASECKA

#	Article	IF	CITATIONS
55	Two dimensional heat transfer problem in flow boiling in a rectangular minichannel. EPJ Web of Conferences, 2015, 92, 02023.	0.3	0
56	Impact of selected parameters on refrigerant flow boiling heat transfer and pressure drop in minichannels. International Journal of Refrigeration, 2015, 56, 198-212.	3.4	45
57	Heat transfer coefficient during flow boiling in a minichannel at variable spatial orientation. Experimental Thermal and Fluid Science, 2015, 68, 459-467.	2.7	38
58	Correlations for flow boiling heat transfer in minichannels with various orientations. International Journal of Heat and Mass Transfer, 2015, 81, 114-121.	4.8	48
59	Heat transfer coefficient determination for flow boiling in vertical and horizontal minichannels. EPJ Web of Conferences, 2014, 67, 02094.	0.3	2
60	Numerical modelling of temperature fields in the flow boiling liquid through a vertical minichannel with an enhanced heating surface. EPJ Web of Conferences, 2014, 67, 02038.	0.3	0
61	Application of heat transfer correlations for FC-72 flow boiling heat transfer in minichannels with various orientations. MATEC Web of Conferences, 2014, 18, 01009.	0.2	1
62	Laser Texturing, Spark Erosion and Sanding of the Surfaces and their Practical Applications in Heat Exchange Devices. Advanced Materials Research, 2014, 874, 95-100.	0.3	25
63	Flow Boiling Heat Transfer in A Minichannel with Enhanced Heating Surface. Heat Transfer Engineering, 2014, 35, 903-912.	1.9	24
64	The use of enhanced surface in flow boiling heat transfer in a rectangular minichannel. Experimental Heat Transfer, 2014, 27, 231-255.	3.2	26
65	Heat transfer research on enhanced heating surfaces in flow boiling in a minichannel and pool boiling. Annals of Nuclear Energy, 2014, 73, 282-293.	1.8	28
66	Equalizing calculus in Trefftz method for solving two-dimensional temperature field of FC-72 flowing along the minichannel. Heat and Mass Transfer, 2014, 50, 1053-1063.	2.1	27
67	Heat transfer mechanism, pressure drop and flow patterns during FC-72 flow boiling in horizontal and vertical minichannels with enhanced walls. International Journal of Heat and Mass Transfer, 2013, 66, 472-488.	4.8	36
68	Enhanced heating surface application in a minichannel flow and the use of the FEM and Trefftz functions for the solution of inverse heat transfer problem. Experimental Thermal and Fluid Science, 2013, 44, 23-33.	2.7	31
69	An application of enhanced heating surface with mini-reentrant cavities for flow boiling research in minichannels. Heat and Mass Transfer, 2013, 49, 261-275.	2.1	31
70	Application of the finite element method to the determining of boiling heat transfer coefficient for minichannel flow. Archives of Thermodynamics, 2013, 34, 55-69.	1.0	4
71	Determination of the Temperature Field Using Liquid Crystal Thermography and Analysis of Two-Phase Flow Structures in Research on Boiling Heat Transfer in a Minichannel. Metrology and Measurement Systems, 2013, 20, 205-216.	1.4	23
72	Pool boiling on surfaces with mini-fins and micro-cavities. Journal of Physics: Conference Series, 2012, 395, 012137.	0.4	18

MAGDALENA PIASECKA

#	Article	IF	CITATIONS
73	Experimental study of flow boiling heat transfer in a rectangular minichannel by using various enhanced heating surface. Journal of Physics: Conference Series, 2012, 395, 012136.	0.4	1
74	The solution of the two-dimensional inverse heat transfer problem with the use of the FEM in combination with Trefftz functions. EPJ Web of Conferences, 2012, 25, 01073.	0.3	1
75	FEM method with the use of Trefftz functions for determination of heat transfer coefficient in a minichannel. EPJ Web of Conferences, 2012, 25, 02022.	0.3	Ο
76	The study of boiling heat transfer in vertically and horizontally oriented rectangular minichannels and the solution to the inverse heat transfer problem with the use of the Beck method and Trefftz functions. Experimental Thermal and Fluid Science, 2012, 38, 19-32.	2.7	42
77	Investigation into flow boiling heat transfer in a minichannel with enhanced heating surface. EPJ Web of Conferences, 2012, 25, 01072.	0.3	1
78	Boiling heat transfer in vertical minichannels. Liquid crystal experiments and numerical investigations. International Journal of Thermal Sciences, 2009, 48, 1049-1059.	4.9	44
79	Experimental Error Analysis and Heat Polynomial Method Improvement for Boiling Heat Transfer Numerical Calculations in Minichannels. , 2005, , .		1
80	Hysteresis Phenomena at the Onset of Subcooled Nucleate Flow Boiling in Microchannels. Heat Transfer Engineering, 2004, 25, 44-51.	1.9	30
81	Experimental evaluation of flow boiling incipience of subcooled fluid in a narrow channel. International Journal of Heat and Fluid Flow, 2004, 25, 159-172.	2.4	46
82	Influence of Selected Parameters on Boiling Heat Transfer in Minichannels. , 2004, , 515.		4
83	Hysteresis Phenomena at the Onset of Subcooled Nucleate Flow Boiling in Microchannels. , 2003, , 581.		1