Jian Jian Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8949961/publications.pdf

Version: 2024-02-01

61857 69108 6,146 101 43 77 citations h-index g-index papers 104 104 104 9440 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Metabolic oxidation/reduction reactions and cellular responses to ionizing radiation: A unifying concept in stress response biology. Cancer and Metastasis Reviews, 2004, 23, 311-322.	2.7	584
2	The role of NF-κB in the regulation of cell stress responses. International Immunopharmacology, 2002, 2, 1509-1520.	1.7	298
3	Cyclin B1/Cdk1 Coordinates Mitochondrial Respiration for Cell-Cycle G2/M Progression. Developmental Cell, 2014, 29, 217-232.	3.1	292
4	Manganese Superoxide Dismutase-Mediated Gene Expression in Radiation-Induced Adaptive Responses. Molecular and Cellular Biology, 2003, 23, 2362-2378.	1.1	263
5	MnSOD in Oxidative Stress Response-Potential Regulation (i) via (i) Mitochondrial Protein Influx. Antioxidants and Redox Signaling, 2014, 20, 1599-1617.	2.5	250
6	NF-κB-mediated adaptive resistance to ionizing radiation. Free Radical Biology and Medicine, 2008, 44, 1-13.	1.3	200
7	HER2-Associated Radioresistance of Breast Cancer Stem Cells Isolated from HER2-Negative Breast Cancer Cells. Clinical Cancer Research, 2012, 18, 6634-6647.	3.2	183
8	Transformable peptide nanoparticles arrest HER2 signalling and cause cancer cell death in vivo. Nature Nanotechnology, 2020, 15, 145-153.	15.6	159
9	Breast cancer stem cells: Multiple capacities in tumor metastasis. Cancer Letters, 2014, 349, 1-7.	3.2	156
10	Kinesin Family Deregulation Coordinated by Bromodomain Protein ANCCA and Histone Methyltransferase MLL for Breast Cancer Cell Growth, Survival, and Tamoxifen Resistance. Molecular Cancer Research, 2014, 12, 539-549.	1.5	152
11	NF-κB-Mediated <i>HER2</i> Overexpression inRadiation-Adaptive Resistance. Radiation Research, 2009, 171, 9-21.	0.7	148
12	The network of epithelial–mesenchymal transition: potential new targets for tumor resistance. Journal of Cancer Research and Clinical Oncology, 2015, 141, 1697-1713.	1.2	118
13	Hyaluronan–CD44 Interaction Promotes Oncogenic Signaling, microRNA Functions, Chemoresistance, and Radiation Resistance in Cancer Stem Cells Leading to Tumor Progression. Advances in Cancer Research, 2014, 123, 255-275.	1.9	110
14	Cyclin B1/CDK1-regulated mitochondrial bioenergetics in cell cycle progression and tumor resistance. Cancer Letters, 2019, 443, 56-66.	3.2	107
15	Tumor Cells Switch to Mitochondrial Oxidative Phosphorylation under Radiation via mTOR-Mediated Hexokinase II Inhibition - A Warburg-Reversing Effect. PLoS ONE, 2015, 10, e0121046.	1.1	98
16	Molecular mechanisms and treatment of radiation-induced lung fibrosis. Current Drug Targets, 2013, 14, 1347-56.	1.0	98
17	Mutual regulation of c-Jun and ATF2 by transcriptional activation and subcellular localization. EMBO Journal, 2006, 25, 1058-1069.	3.5	96
18	Immune targets in the tumor microenvironment treated by radiotherapy. Theranostics, 2019, 9, 1215-1231.	4.6	96

#	Article	IF	Citations
19	Nuclear Factor-κB and Manganese Superoxide Dismutase Mediate Adaptive Radioresistance in Low-Dose Irradiated Mouse Skin Epithelial Cells. Cancer Research, 2007, 67, 3220-3228.	0.4	93
20	Blocking the formation of radiation-induced breast cancer stem cells. Oncotarget, 2014, 5, 3743-3755.	0.8	92
21	The Role of Peroxiredoxin II in Radiation-Resistant MCF-7 Breast Cancer Cells. Cancer Research, 2005, 65, 10338-10346.	0.4	91
22	CPT1A/2-Mediated FAO Enhancementâ€"A Metabolic Target in Radioresistant Breast Cancer. Frontiers in Oncology, 2019, 9, 1201.	1.3	91
23	Expression of ErbB2 enhances radiation-induced NF-κB activation. Oncogene, 2004, 23, 535-545.	2.6	87
24	CDK1-Mediated SIRT3 Activation Enhances Mitochondrial Function and Tumor Radioresistance. Molecular Cancer Therapeutics, 2015, 14, 2090-2102.	1.9	87
25	Nuclear Factor-κB p65 Inhibits Mitogen-Activated Protein Kinase Signaling Pathway in Radioresistant Breast Cancer Cells. Molecular Cancer Research, 2006, 4, 945-955.	1.5	83
26	CDK1 Enhances Mitochondrial Bioenergetics for Radiation-Induced DNA Repair. Cell Reports, 2015, 13, 2056-2063.	2.9	83
27	Autologous Tumor Lysate-Pulsed Dendritic Cell Immunotherapy with Cytokine-Induced Killer Cells Improves Survival in Gastric and Colorectal Cancer Patients. PLoS ONE, 2014, 9, e93886.	1.1	81
28	$ROR\hat{I}^3$ is a targetable master regulator of cholesterol biosynthesis in a cancer subtype. Nature Communications, 2019, 10, 4621.	5.8	81
29	Dual blockade of CD47 and HER2 eliminates radioresistant breast cancer cells. Nature Communications, 2020, 11, 4591.	5.8	81
30	SIRT3 Enhances Glycolysis and Proliferation in SIRT3-Expressing Gastric Cancer Cells. PLoS ONE, 2015, 10, e0129834.	1.1	79
31	Fatty acid oxidation fuels glioblastoma radioresistance with CD47-mediated immune evasion. Nature Communications, 2022, 13, 1511.	5.8	77
32	Delayed Radioprotection by NFκB-Mediated Induction of Sod2 (MnSOD) in SA-NH Tumor Cells after Exposure to Clinically Used Thiol-Containing Drugs. Radiation Research, 2004, 162, 536-546.	0.7	74
33	Identification of Piwil2-Like (PL2L) Proteins that Promote Tumorigenesis. PLoS ONE, 2010, 5, e13406.	1.1	73
34	CyclinB1/Cdk1 phosphorylates mitochondrial antioxidant MnSOD in cell adaptive response to radiation stress. Journal of Molecular Cell Biology, 2013, 5, 166-175.	1.5	67
35	Co-activation of ERK, NF-κB, and GADD45β in Response to Ionizing Radiation. Journal of Biological Chemistry, 2005, 280, 12593-12601.	1.6	65
36	Reprogramming metabolism by histone methyltransferase NSD2 drives endocrine resistance via coordinated activation of pentose phosphate pathway enzymes. Cancer Letters, 2016, 378, 69-79.	3.2	64

#	Article	lF	CITATIONS
37	ATM-NF-κB Connection as a Target for Tumor Radiosensitization. Current Cancer Drug Targets, 2007, 7, 335-342.	0.8	61
38	Breast cancer adaptive resistance: HER2 and cancer stem cell repopulation in a heterogeneous tumor society. Journal of Cancer Research and Clinical Oncology, 2014, 140, 1-14.	1.2	60
39	Unique Photochemo-Immuno-Nanoplatform against Orthotopic Xenograft Oral Cancer and Metastatic Syngeneic Breast Cancer. Nano Letters, 2018, 18, 7092-7103.	4.5	59
40	HER-2 and NF-kappaB as the targets for therapy-resistant breast cancer. Anticancer Research, 2006, 26, 4235-43.	0.5	51
41	All-trans retinoic acids induce differentiation and sensitize a radioresistant breast cancer cells to chemotherapy. BMC Complementary and Alternative Medicine, 2016, 16, 113.	3.7	49
42	Cyclin B1/Cdk1 Phosphorylation of Mitochondrial p53 Induces Anti-Apoptotic Response. PLoS ONE, 2010, 5, e12341.	1.1	49
43	Extracellular Matrix Protein Tenascin C Increases Phagocytosis Mediated by CD47 Loss of Function in Glioblastoma. Cancer Research, 2019, 79, 2697-2708.	0.4	48
44	Germline Stem Cell Gene PIWIL2 Mediates DNA Repair through Relaxation of Chromatin. PLoS ONE, 2011, 6, e27154.	1.1	46
45	A Survivin-Associated Adaptive Response in Radiation Therapy. Cancer Research, 2013, 73, 4418-4428.	0.4	45
46	Mitochondrial MKP1 Is a Target for Therapy-Resistant HER2-Positive Breast Cancer Cells. Cancer Research, 2014, 74, 7498-7509.	0.4	45
47	Nanoparticles for live cell microscopy: A surface-enhanced Raman scattering perspective. Scientific Reports, 2017, 7, 4471.	1.6	43
48	Coactivation of ATM/ERK/NF-κB in the low-dose radiation-induced radioadaptive response in human skin keratinocytes. Free Radical Biology and Medicine, 2009, 46, 1543-1550.	1.3	42
49	STAT3 activation is required for interleukin-6 induced transformation in tumor-promotion sensitive mouse skin epithelial cells. Oncogene, 2002, 21, 3949-3960.	2.6	40
50	Mitogen-activated Protein Kinase Phosphatase-1 Represses c-Jun NH2-terminal Kinase-mediated Apoptosis via NF-κB Regulation. Journal of Biological Chemistry, 2008, 283, 21011-21023.	1.6	40
51	Proapoptotic Function of Integrin $\hat{l}^2 3$ in Human Hepatocellular Carcinoma Cells. Clinical Cancer Research, 2009, 15, 60-69.	3.2	37
52	Cell Cycle Regulators Guide Mitochondrial Activity in Radiation-Induced Adaptive Response. Antioxidants and Redox Signaling, 2014, 20, 1463-1480.	2.5	36
53	Low-Level Saturated Fatty Acid Palmitate Benefits Liver Cells by Boosting Mitochondrial Metabolism via CDK1-SIRT3-CPT2 Cascade. Developmental Cell, 2020, 52, 196-209.e9.	3.1	36
54	The role of NBS1 in the modulation of PIKK family proteins ATM and ATR in the cellular response to DNA damage. Cancer Letters, 2006, 243, 9-15.	3.2	35

#	Article	IF	Citations
55	Dual blockage of STAT3 and ERK1/2 eliminates radioresistant GBM cells. Redox Biology, 2019, 24, 101189.	3.9	35
56	CDK4-mediated MnSOD activation and mitochondrial homeostasis in radioadaptive protection. Free Radical Biology and Medicine, 2015, 81, 77-87.	1.3	34
57	Profiling Global Kinome Signatures of the Radioresistant MCF-7/C6 Breast Cancer Cells Using MRM-based Targeted Proteomics. Journal of Proteome Research, 2015, 14, 193-201.	1.8	33
58	Maintenance of Manganese Superoxide Dismutase (<i>SOD2</i>)-Mediated Delayed Radioprotection Induced by Repeated Administration of the Free Thiol Form of Amifostine. Radiation Research, 2008, 169, 495-505.	0.7	32
59	Manganese superoxide dismutase interacts with a large scale of cellular and mitochondrial proteins in low-dose radiation-induced adaptive radioprotection. Free Radical Biology and Medicine, 2012, 53, 1838-1847.	1.3	31
60	p53 Activation in Chronic Radiation-Treated Breast Cancer Cells. Cancer Research, 2004, 64, 221-228.	0.4	30
61	A Manganese Superoxide Dismutase (SOD2)-Mediated Adaptive Response. Radiation Research, 2013, 179, 115-124.	0.7	29
62	Response of cyclin B1 to ionizing radiation: regulation by NF-kappaB and mitochondrial antioxidant enzyme MnSOD. Anticancer Research, 2004, 24, 2657-63.	0.5	29
63	Potential use of nucleic acid-based agents in the sensitization of nasopharyngeal carcinoma to radiotherapy. Cancer Letters, 2012, 323, 1-10.	3.2	20
64	Therapeutic effects of alpha-lipoic acid on bleomycin-induced pulmonary fibrosis in rats. International Journal of Molecular Medicine, 2007, 19, 865-73.	1.8	19
65	SOD2-Mediated Effects Induced by WR1065 and Low-Dose Ionizing Radiation on Micronucleus Formation in RKO Human Colon Carcinoma Cells. Radiation Research, 2011, 175, 57-65.	0.7	18
66	The role of radiotherapy-resistant stem cells in breast cancer recurrence. Breast Cancer Management, 2013, 2, 89-92.	0.2	15
67	Targeted Profiling of Heat Shock Proteome in Radioresistant Breast Cancer Cells. Chemical Research in Toxicology, 2019, 32, 326-332.	1.7	14
68	Anthropomorphic Phantoms for Confirmation of Linear Accelerator-Based Small Animal Irradiation. Cureus, 2015, 7, e254.	0.2	14
69	NFκB and Survivin-Mediated Radio-Adaptive Response. Radiation Research, 2015, 183, 391-397.	0.7	13
70	Very low doses of ionizing radiation and redox associated modifiers affect survivin-associated changes in radiation sensitivity. Free Radical Biology and Medicine, 2016, 99, 110-119.	1.3	12
71	Mitigating Coronavirus-Induced Acute Respiratory Distress Syndrome by Radiotherapy. IScience, 2020, 23, 101215.	1.9	12
72	Enhanced anti-colon cancer immune responses with modified eEF2-derived peptides. Cancer Letters, 2015, 369, 112-123.	3.2	10

#	Article	IF	CITATIONS
73	Abstract 4963: The dynamic change of CD47 expression promotes tumor burden, metastases and resistance of breast cancer cells to radiotherapy Cancer Research, 2013, 73, 4963-4963.	0.4	10
74	Rab25-Mediated EGFR Recycling Causes Tumor Acquired Radioresistance. IScience, 2020, 23, 100997.	1.9	9
75	Enhanced radiation response in radioresistant MCF-7 cells by targeting peroxiredoxin II. Breast Cancer: Targets and Therapy, 2013, 5, 87.	1.0	8
76	MKP1 mediates resistance to therapy in HER2-positive breast tumors. Molecular and Cellular Oncology, 2015, 2, e997518.	0.3	8
77	BZLF1 controlled by family repeat domain induces lytic cytotoxicity in Epstein-Barr virus-positive tumor cells. Anticancer Research, 2004, 24, 67-74.	0.5	8
78	Comparing radiation toxicities across species: An examination of radiation effects in <i>Mus musculus </i> and <i>Peromyscus leucopus </i> . International Journal of Radiation Biology, 2013, 89, 391-400.	1.0	6
79	Relationship between thermal tolerance and protein degradation in temperature-sensitive mouse cells. Journal of Cellular Physiology, 1992, 151, 310-317.	2.0	5
80	Multiple Dynamics in Tumor Microenvironment Under Radiotherapy. Advances in Experimental Medicine and Biology, 2020, 1263, 175-202.	0.8	5
81	Nuclear TIGAR mediates an epigenetic and metabolic autoregulatory loop via NRF2 in cancer therapeutic resistance. Acta Pharmaceutica Sinica B, 2021, , .	5.7	5
82	Cell repopulation, rewiring metabolism, and immune regulation in cancer radiotherapy. Radiation Medicine and Protection, 2020, 1, 24-30.	0.4	3
83	Effects of radiation on tumor hemodynamics and NF-kappaB in breast tumors. , 2010, , .		0
84	Cancer Stem Cells and Radiotherapy. Medical Radiology, 2012, , 49-57.	0.0	0
85	mTOR Switches Aerobic Glycolysis to Oxidative Phosphrylation in Cellular Bioenergetics Under Radiation. Free Radical Biology and Medicine, 2012, 53, S46.	1.3	0
86	Phosphorylation of MnSOD Protein at Serine-106 by Mitochondrial CyclinD1/CDK4 Enhances MnSOD Enzymatic Activity in Radiation-Induced Adaptive Response. Free Radical Biology and Medicine, 2012, 53, S110.	1.3	0
87	Cancer Stem Cells and Tumor Microenvironment in Radiotherapy. Cancer Treatment and Research, 2017, , 191-221.	0.2	0
88	Low level saturated fatty acid palmitate benefits liver cells by boosting mitochondrial homeostasis via CDK1-SIRT3-CPT2 cascade. Free Radical Biology and Medicine, 2018, 128, S96.	1.3	0
89	Combined STAT3 and ERK1/2 inhibition synergizes with radiation to eliminate radioresistant glioblastoma cells. Free Radical Biology and Medicine, 2018, 128, S76-S77.	1.3	0
90	Circadian Protein PERIOD 2 Regulates Adaptive Radioprotection via PER2/pGSK3 \hat{l}^2/\hat{l}^2 -Catenin/Per2 Loop. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
91	Abstract 5724: HER2-mediated resistance of breast cancer stem cells in HER2-negative/low breast cancer., 2012,,.		0
92	Abstract 74: Mitochondrial MKP1-mediated radioresistance in breast cancer stem cells, 2013, , .		0
93	Abstract 444: Mitochondrial metabolism and phosphorylation of Stat3 in radioresistant cancer stem cells isolated from glioma U87 cells , 2013, , .		O
94	Abstract 2812: The clinical effects of dendritic cell and cytokine-induced killer cell therapy for lung cancer after surgery. , 2014, , .		0
95	Abstract 5107: The role of PERIOD2 for radioprotection against ionizing radiation in mice bone marrow. , 2014, , .		O
96	Abstract 3025: HER2/Stat3 signaling mediated radioresistance in U87 glioma cancer cells through suppressed apoptosis and enhanced glycolysis. , 2014, , .		0
97	Abstract 861: Survivin-mediated adaptive response: a risk factor for IGRT., 2014, , .		0
98	Abstract 3029: MKP1-mediated survival of HER2 positive breast cancer stem cells., 2014,,.		0
99	Long-Term Live Cell Imaging of Breast Cancer Stem Cell Biomarkers Using Nanoparticle Labels. , 2015, , .		O
100	Abstract 3043: Survivin-mediated radio-sensitization response in p53 mutant tumor cells., 2016,,.		0
101	Abstract LB-226: Dual inhibition of CD47 and HER2 to radiosensitize breast cancer cells., 2017,,.		О