Qi Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8949769/publications.pdf

Version: 2024-02-01

361296 360920 1,284 42 20 35 citations h-index g-index papers 42 42 42 2288 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Type I photosensitizer based on AIE chromophore tricyano-methylene-pyridine for photodynamic therapy. Green Chemical Engineering, 2023, 4, 324-330.	3.3	2
2	AIE-active luminogens as highly efficient free-radical ROS photogenerator for image-guided photodynamic therapy. Chemical Science, 2022, 13, 3599-3608.	3.7	73
3	An environmentally friendly AIE probe for CMC determination. Materials Chemistry Frontiers, 2022, 6, 1005-1009.	3.2	5
4	Water-soluble bright NIR AlEgens with hybrid ROS for wash-free mitochondrial "off–on―imaging and photodynamic therapy. Chemical Communications, 2022, 58, 6393-6396.	2.2	9
5	Real-time detection and imaging of exogenous and endogenous Zn ²⁺ in the PC12 cell model of depression with a NIR fluorescent probe. Analyst, The, 2021, 146, 3971-3976.	1.7	10
6	AIE-based nanoaggregate tracker: high-fidelity visualization of lysosomal movement and drug-escaping processes. Chemical Science, 2020, 11, 12755-12763.	3.7	30
7	Development of a Liposomal Formulation of Acetyltanshinone IIA for Breast Cancer Therapy. Molecular Pharmaceutics, 2019, 16, 3873-3886.	2.3	3
8	A photo-stable and reversible pH-responsive nano-agent based on the NIR phenazine dye for photoacoustic imaging-guided photothermal therapy. Chemical Communications, 2019, 55, 10940-10943.	2.2	21
9	pH-Sensitive Shell–Core Platform Block DNA Repair Pathway To Amplify Irreversible DNA Damage of Triple Negative Breast Cancer. ACS Applied Materials & Samp; Interfaces, 2019, 11, 38417-38428.	4.0	25
10	Nanomized tumor-microenvironment-active NIR fluorescent prodrug for ensuring synchronous occurrences of drug release and fluorescence tracing. Journal of Materials Chemistry B, 2019, 7, 1503-1509.	2.9	18
11	Gold-caged copolymer nanoparticles as multimodal synergistic photodynamic/photothermal/chemotherapy platform against lethality androgen-resistant prostate cancer. Biomaterials, 2019, 212, 73-86.	5.7	66
12	Tumour targeted contrast enhanced ultrasound imaging dual-modal microbubbles for diagnosis and treatment of triple negative breast cancer. RSC Advances, 2019, 9, 5682-5691.	1.7	16
13	Highâ€Fidelity Trapping of Spatial–Temporal Mitochondria with Rational Design of Aggregationâ€Induced Emission Probes. Advanced Functional Materials, 2019, 29, 1808153.	7.8	73
14	Incorporation of drug efflux inhibitor and chemotherapeutic agent into an inorganic/organic platform for the effective treatment of multidrug resistant breast cancer. Journal of Nanobiotechnology, 2019, 17, 125.	4.2	19
15	Multifunctional Shell–Core Nanoparticles for Treatment of Multidrug Resistance Hepatocellular Carcinoma. Advanced Functional Materials, 2018, 28, 1706124.	7.8	51
16	Dendronâ€Grafted Polylysineâ€Based Dualâ€Modal Nanoprobe for Ultraâ€Early Diagnosis of Pancreatic Precancerosis via Targeting a Urokinaseâ€Type Plasminogen Activator Receptor. Advanced Healthcare Materials, 2018, 7, 1700912.	3.9	21
17	Nearâ€Infrared Fluorescent Theranostic Cisplatin Prodrug with Transcatheter Intraâ€Arterial Therapy: Application to Rabbit Hepatocellular Carcinoma. Advanced Therapeutics, 2018, 1, 1800093.	1.6	6
18	Simple and rational design of a polymer nano-platform for high performance of HCV related miR-122 reduction in the liver. Biomaterials Science, 2018, 6, 2667-2680.	2.6	10

#	Article	IF	CITATIONS
19	Thermoresponsive nanocomposite gel for local drug delivery to suppress the growth of glioma by inducing autophagy. Autophagy, 2017, 13, 1176-1190.	4.3	63
20	Temperature-Sensitive Gold Nanoparticle-Coated Pluronic-PLL Nanoparticles for Drug Delivery and Chemo-Photothermal Therapy. Theranostics, 2017, 7, 4424-4444.	4.6	46
21	Enhancement of the bioavailability of a novel anticancer compound (acetyltanshinone IIA) by encapsulation within mPEG-PLGA nanoparticles: a study of formulation optimization, toxicity, and pharmacokinetics. Oncotarget, 2017, 8, 12013-12030.	0.8	10
22	EGF-modified mPEG-PLGA-PLL nanoparticle for delivering doxorubicin combined with Bcl-2 siRNA as a potential treatment strategy for lung cancer. Drug Delivery, 2016, 23, 2936-2945.	2.5	44
23	Enhanced delivery of PEAL nanoparticles with ultrasound targeted microbubble destruction mediated siRNA transfection in human MCF-7/S and MCF-7/ADR cells in vitro. International Journal of Nanomedicine, 2015, 10, 5447.	3.3	13
24	Degradation and Bio-Safety Evaluation of mPEG-PLGA-PLL Copolymer-Prepared Nanoparticles. Journal of Physical Chemistry C, 2015, 119, 3348-3362.	1.5	20
25	Low toxicity and long circulation time of Polyampholyte-coated magnetic nanoparticles for blood pool contrast agents. Scientific Reports, 2015, 5, 7774.	1.6	50
26	Targeted polymeric therapeutic nanoparticles: Design and interactions with hepatocellular carcinoma. Biomaterials, 2015, 56, 229-240.	5.7	26
27	Preparation and properties of biocompatible PS-PEG/calcium phosphate nanospheres. Nanotoxicology, 2015, 9, 190-200.	1.6	19
28	A New PAMPA Model Proposed on the Basis of a Synthetic Phospholipid Membrane. PLoS ONE, 2015, 10, e0116502.	1.1	40
29	Specific cell targeting with APRPG conjugated PEG–PLGA nanoparticles for treating ovarian cancer. Biomaterials, 2014, 35, 983-992.	5.7	49
30	Preparation, blood coagulation and cell compatibility evaluation of chitosan-graft-polylactide copolymers. Biomedical Materials (Bristol), 2014, 9, 015007.	1.7	14
31	The biocompatibility evaluation of mPEG-PLGA-PLL copolymer and different LA/GA ratio effects for biocompatibility. Journal of Biomaterials Science, Polymer Edition, 2014, 25, 943-964.	1.9	23
32	Study of SiRNA-loaded PS-mPEG/CaP nanospheres on lung cancer. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	3
33	Intracellular trafficking and cellular uptake mechanism of mPEG-PLGA-PLL and mPEG-PLGA-PLL-Gal nanoparticles for targeted delivery to hepatomas. Biomaterials, 2014, 35, 760-770.	5.7	88
34	F127/Calcium phosphate hybrid nanoparticles: a promising vector for improving siRNA delivery and gene silencing. Journal of Biomaterials Science, Polymer Edition, 2013, 24, 1757-1766.	1.9	14
35	cRGD Conjugated mPEG-PLGA-PLL Nanoparticles for SGC-7901 Gastric Cancer Cells-Targeted Delivery of Fluorouracil. Journal of Nanoscience and Nanotechnology, 2012, 12, 4467-4471.	0.9	13
36	cRGD-functionalized mPEG-PLGA-PLL nanoparticles for imaging and therapy of breast cancer. Biomaterials, 2012, 33, 6739-6747.	5.7	89

#	Article	IF	CITATION
37	Structural characterization of novel phospholipid lipid nanoparticles for controlled drug delivery. Colloids and Surfaces B: Biointerfaces, 2011, 84, 406-412.	2.5	16
38	Flower‣ike Hierarchically Nanostructured Hydroxyapatite Hollow Spheres: Facile Preparation and Application in Anticancer Drug Cellular Delivery. Chemistry - an Asian Journal, 2010, 5, 2477-2482.	1.7	70
39	Porous nanocomposites of PEG-PLA/calcium phosphate: room-temperature synthesis and its application in drug delivery. Dalton Transactions, 2010, 39, 4435.	1.6	37
40	Preparation of DHAQ-loaded mPEG-PLGA-mPEG nanoparticles and evaluation of drug release behaviors in vitro/in vivo. Journal of Materials Science: Materials in Medicine, 2006, 17, 509-516.	1.7	40
41	Optimization of preparation of DHAQ-loaded PEG-PLGA-PEG nonaparticles using central composite design. Journal of Materials Science: Materials in Medicine, 2006, 17, 559-563.	1.7	10
42	Evaluation of blood compatibility of MeO-PEG-poly (D,L-lactic-co-glycolic acid)-PEG-OMe triblock copolymer. Journal of Applied Polymer Science, 2006, 100, 1019-1023.	1.3	29