
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8949637/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol. Chemical Physics Letters, 2002, 360, 229-234.	2.6	965
2	Growth of vertically aligned single-walled carbon nanotube films on quartz substrates and their optical anisotropy. Chemical Physics Letters, 2004, 385, 298-303.	2.6	522
3	Fluorescence spectroscopy of single-walled carbon nanotubes synthesized from alcohol. Chemical Physics Letters, 2004, 387, 198-203.	2.6	299
4	A molecular dynamics simulation of heat conduction in finite length SWNTs. Physica B: Condensed Matter, 2002, 323, 193-195.	2.7	287
5	Third and Fourth Optical Transitions in Semiconducting Carbon Nanotubes. Physical Review Letters, 2007, 98, 067401.	7.8	274
6	Molecular dynamics simulation of formation process of single-walled carbon nanotubes by CCVD method. Chemical Physics Letters, 2003, 382, 381-386.	2.6	224
7	A MOLECULAR DYNAMICS SIMULATION OF HEAT CONDUCTION OF A FINITE LENGTH SINGLE-WALLED CARBON NANOTUBE. Microscale Thermophysical Engineering, 2003, 7, 41-50.	1.2	197
8	Growth process of vertically aligned single-walled carbon nanotubes. Chemical Physics Letters, 2005, 403, 320-323.	2.6	172
9	Morphology and chemical state of Co?Mo catalysts for growth ofBsingle-walled carbon nanotubes vertically aligned on quartz substrates. Journal of Catalysis, 2004, 225, 230-239.	6.2	133
10	Growth Deceleration of Vertically Aligned Carbon Nanotube Arrays:  Catalyst Deactivation or Feedstock Diffusion Controlled?. Journal of Physical Chemistry C, 2008, 112, 4892-4896.	3.1	102
11	Self-Limiting Chemical Vapor Deposition Growth of Monolayer Graphene from Ethanol. Journal of Physical Chemistry C, 2013, 117, 10755-10763.	3.1	92
12	Chemical vapor deposition growth of 5 mm hexagonal single-crystal graphene from ethanol. Carbon, 2015, 94, 810-815.	10.3	74
13	Atomic-scale structural identification and evolution of Co-W-C ternary SWCNT catalytic nanoparticles: High-resolution STEM imaging on SiO ₂ . Science Advances, 2019, 5, eaat9459.	10.3	71
14	Equilibrium Chemical Vapor Deposition Growth of Bernal-Stacked Bilayer Graphene. ACS Nano, 2014, 8, 11631-11638.	14.6	65
15	Synthesis of subnanometer-diameter vertically aligned single-walled carbon nanotubes with copper-anchored cobalt catalysts. Nanoscale, 2016, 8, 1608-1617.	5.6	61
16	Diameter-controlled and nitrogen-doped vertically aligned single-walled carbon nanotubes. Carbon, 2012, 50, 2635-2640.	10.3	58
17	Chirality specific and spatially uniform synthesis of single-walled carbon nanotubes from a sputtered Co–W bimetallic catalyst. Nanoscale, 2016, 8, 14523-14529.	5.6	58
18	Diameter Modulation of Vertically Aligned Single-Walled Carbon Nanotubes. ACS Nano, 2012, 6, 7472-7479.	14.6	52

#	Article	IF	CITATIONS
19	Self-Assembled Microhoneycomb Network of Single-Walled Carbon Nanotubes for Solar Cells. Journal of Physical Chemistry Letters, 2013, 4, 2571-2576.	4.6	51
20	Carbon Atoms in Ethanol Do Not Contribute Equally to Formation of Single-Walled Carbon Nanotubes. ACS Nano, 2013, 7, 3095-3103.	14.6	43
21	Zipping, entanglement, and the elastic modulus of aligned single-walled carbon nanotube films. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20426-20430.	7.1	40
22	Enhanced In-Plane Thermal Conductance of Thin Films Composed of Coaxially Combined Single-Walled Carbon Nanotubes and Boron Nitride Nanotubes. ACS Nano, 2020, 14, 4298-4305.	14.6	36
23	Extended alcohol catalytic chemical vapor deposition for efficient growth of single-walled carbon nanotubes thinner than (6,5). Carbon, 2017, 119, 502-510.	10.3	35
24	One-Dimensional van der Waals Heterojunction Diode. ACS Nano, 2021, 15, 5600-5609.	14.6	34
25	Quantitative study of bundle size effect on thermal conductivity of single-walled carbon nanotubes. Applied Physics Letters, 2018, 112, 191904.	3.3	32
26	Reversible Diameter Modulation of Single-Walled Carbon Nanotubes by Acetonitrile-Containing Feedstock. ACS Nano, 2013, 7, 2205-2211.	14.6	30
27	Multifunctional graphene and carbon nanotube films for planar heterojunction solar cells. Progress in Energy and Combustion Science, 2019, 70, 1-21.	31.2	30
28	Excitonic effects on radial breathing mode intensity of single wall carbon nanotubes. Chemical Physics Letters, 2010, 497, 94-98.	2.6	28
29	Effect of Gas Pressure on the Density of Horizontally Aligned Single-Walled Carbon Nanotubes Grown on Quartz Substrates. Journal of Physical Chemistry C, 2013, 117, 11804-11810.	3.1	28
30	Chemical vapor deposition growth of large single-crystal bernal-stacked bilayer graphene from ethanol. Carbon, 2016, 107, 852-856.	10.3	25
31	Intrinsic Chirality Origination in Carbon Nanotubes. ACS Nano, 2017, 11, 9941-9949.	14.6	23
32	Polarization dependence of radial breathing mode peaks in resonant Raman spectra of vertically aligned single-walled carbon nanotubes. Physical Review B, 2010, 81, .	3.2	17
33	Growth Mechanism and Internal Structure of Vertically Aligned Single-Walled Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 2008, 8, 6093-6098.	0.9	16
34	Tailoring the surface morphology of carbon nanotube forests by plasma etching: A parametric study. Carbon, 2021, 180, 204-214.	10.3	14
35	Water-assisted self-sustained burning of metallic single-walled carbon nanotubes for scalable transistor fabrication. Nano Research, 2017, 10, 3248-3260.	10.4	13
36	On-Chip Sorting of Long Semiconducting Carbon Nanotubes for Multiple Transistors along an Identical Array. ACS Nano, 2017, 11, 11497-11504.	14.6	13

#	Article	IF	CITATIONS
37	Thermal Conductivity of Carbon Nanotubes and Assemblies. Advances in Heat Transfer, 2018, 50, 43-122.	0.9	13
38	Revisiting behaviour of monometallic catalysts in chemical vapour deposition synthesis of single-walled carbon nanotubes. Royal Society Open Science, 2018, 5, 180345.	2.4	13
39	Efficient growth of vertically-aligned single-walled carbon nanotubes combining two unfavorable synthesis conditions. Carbon, 2019, 146, 413-419.	10.3	12
40	Measurement of in-plane sheet thermal conductance of single-walled carbon nanotube thin films by steady-state infrared thermography. Japanese Journal of Applied Physics, 2018, 57, 075101.	1.5	11
41	Regrowth and catalytic etching of individual single-walled carbon nanotubes studied by isotope labeling and growth interruption. Carbon, 2019, 155, 635-642.	10.3	9
42	Zeolite-supported synthesis, solution dispersion, and optical characterizations of single-walled carbon nanotubes wrapped by boron nitride nanotubes. Journal of Applied Physics, 2021, 129, 015101.	2.5	7
43	Thermal properties of single-walled carbon nanotube forests with various volume fractions. International Journal of Heat and Mass Transfer, 2021, 171, 121076.	4.8	6
44	A Comparison Between Reduced and Intentionally Oxidized Metal Catalysts for Growth of Singleâ€Walled Carbon Nanotubes. Physica Status Solidi (B): Basic Research, 2018, 255, 1800187.	1.5	5
45	Dry Drawability of Few-Walled Carbon Nanotubes Grown by Alcohol Chemical Vapor Deposition. Journal of Physical Chemistry C, 2020, 124, 17331-17339.	3.1	3
46	Phenomenological model of thermal transport in carbon nanotube and hetero-nanotube films. Nanotechnology, 2021, 32, 205708.	2.6	2
47	In situ observation of dewetting-induced deformation of vertically aligned single-walled carbon nanotubes. Diamond and Related Materials, 2019, 95, 115-120.	3.9	1