Li-Hua Shao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8949528/publications.pdf

Version: 2024-02-01

759233 610901 25 568 12 24 citations h-index g-index papers 26 26 26 872 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Soft Robot Based on Hyperelastic Buckling Controlled by Discontinuous Magnetic Field. Journal of Mechanisms and Robotics, 2022, 14 , .	2.2	7
2	Transparent and electrically tunable electromagnetic wave absorbing metamaterial. Applied Physics Letters, 2022, 120, .	3.3	18
3	The free-standing nanoporous palladium for hydrogen isotope storage. Journal of Alloys and Compounds, 2021, 854, 157062.	5 . 5	11
4	Ultrahigh flexoelectric effect of 3D interconnected porous polymers: modelling and verification. Journal of the Mechanics and Physics of Solids, 2021, 151, 104396.	4.8	35
5	Uniform yolk–shell structured Si–C nanoparticles as a high performance anode material for the Li-ion battery. Chemical Communications, 2020, 56, 364-367.	4.1	53
6	4D printing composite with electrically controlled local deformation. Extreme Mechanics Letters, 2020, 39, 100793.	4.1	54
7	Ultrafast Dynamics and Energy Relaxation for Nanoporous Gold Materials: Lower Porosity and Faster Energy Exchange. Journal of Physical Chemistry C, 2020, 124, 6356-6363.	3.1	3
8	Investigation of the distinct optical property of nanoporous gold. Results in Physics, 2019, 15, 102645.	4.1	4
9	All-in-one cellulose based hybrid tribo/piezoelectric nanogenerator. Nano Research, 2019, 12, 1831-1835.	10.4	89
10	Hierarchical Nanoporous Carbon Templated and Catalyzed by the Bicontinuous Nanoporous Copper for High Performance Electrochemical Capacitors. ChemistrySelect, 2019, 4, 6437-6444.	1.5	6
11	Monitoring the length change of Ni@C composite electrodes during charging/discharging processes. Electrochemistry Communications, 2019, 103, 94-99.	4.7	9
12	A Bioinspired Functionalization of Polypropylene Separator for Lithium-Sulfur Battery. Polymers, 2019, 11, 728.	4.5	11
13	Effect of Thermal Conductivity on Enhanced Evaporation of Water Droplets from Heated Graphene–PDMS Composite Surfaces. Langmuir, 2019, 35, 6916-6921.	3 . 5	8
14	A Facile Route to Synthesize Micron Size Nearly Spherical Mesoporous Silica Particles. ChemistrySelect, 2019, 4, 2603-2606.	1.5	0
15	Dual-Stimuli Responsive Carbon Nanotube Sponge-PDMS Amphibious Actuator. Nanomaterials, 2019, 9, 1704.	4.1	12
16	The Mechanical Characteristics of Monolithic Nanoporous Copper and Its Composites. Advanced Engineering Materials, 2018, 20, 1800574.	3.5	15
17	Modulating the morphology of ZnO nanorod arrays on SiO x -mask-patterned GaN template. Materials Letters, 2017, 195, 22-25.	2.6	7
18	3D hierarchical macro/mesoporous TiO ₂ with nanoporous or nanotubular structures and their core/shell composites achieved by anodization. CrystEngComm, 2017, 19, 2509-2516.	2.6	5

Li-Hua Shao

#	Article	IF	CITATION
19	Piezoelectric Gold: Strong Chargeâ€Load Response in a Metalâ€Based Hybrid Nanomaterial. Advanced Functional Materials, 2016, 26, 5174-5181.	14.9	51
20	Nanoporous-Gold-Based Hybrid Cantilevered Actuator Dealloyed and Driven by A Modified Rotary Triboelectric Nanogenerator. Scientific Reports, 2016, 6, 24092.	3.3	19
21	Hierarchical nested-network porous copper fabricated by one-step dealloying for glucose sensing. Journal of Alloys and Compounds, 2016, 681, 109-114.	5 . 5	29
22	Nanostructured MWCNT/Polypyrrole Actuators with Anisotropic Strain Response. Advanced Engineering Materials, 2016, 18, 597-607.	3.5	11
23	Electrically Tunable Nanoporous Carbon Hybrid Actuators. Advanced Functional Materials, 2012, 22, 3029-3034.	14.9	39
24	Electrochemical Modulation of Photonic Metamaterials. Advanced Materials, 2010, 22, 5173-5177.	21.0	28
25	Electrocapillary maximum and potential of zero charge of carbon aerogel. Physical Chemistry Chemical Physics, 2010, 12, 7580.	2.8	44