Nicolas D Boscher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8949353/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electronic and energy level engineering of directly fused porphyrin-conjugated polymers – impact of the central metal cation. Journal of Materials Chemistry C, 2022, 10, 2194-2204.	2.7	8
2	Low Temperature Open-Air Plasma Deposition of SrTiO ₃ Films for Solar Energy Harvesting: Impact of Precursors on the Properties and Performances. ACS Applied Materials & Interfaces, 2022, 14, 8527-8536.	4.0	6
3	Enhanced Photocatalytic Hydrogen Evolution from Water Splitting on Ta ₂ O ₅ /SrZrO ₃ Heterostructures Decorated with Cu _{<i>x</i>} O/RuO ₂ Cocatalysts. ACS Applied Materials & amp; Interfaces, 2022, 14. 31767-31781.	4.0	15
4	Influence of double bonds and cyclic structure on the APâ€PECVD of lowâ€ <i>k</i> organosilicon insulating layers. Plasma Processes and Polymers, 2021, 18, 2000222.	1.6	5
5	Insights into switchable thermoresponsive copolymer layers by atmospheric pressure plasmaâ€initiated chemical vapour deposition. Plasma Processes and Polymers, 2020, 17, 1900172.	1.6	2
6	Fused Porphyrin Thin Films as Heterogeneous Visible-Light Active Photocatalysts with Well-Defined Active Metal Sites for Hydrogen Generation. ACS Applied Energy Materials, 2020, 3, 9848-9855.	2.5	26
7	Fused Metalloporphyrin Thin Film with Tunable Porosity via Chemical Vapor Deposition. ACS Applied Materials & Interfaces, 2020, 12, 37732-37740.	4.0	9
8	Molecular Engineering of Porphyrinâ€Tapes/Phthalocyanine Heterojunctions for a Highly Sensitive Ammonia Sensor. Advanced Electronic Materials, 2020, 6, 2000812.	2.6	31
9	Molecular flattening effect to enhance the conductivity of fused porphyrin tape thin films. RSC Advances, 2020, 10, 7048-7057.	1.7	19
10	Plasmaâ€initiated chemical vapour deposition of organosiloxane thin films: From the growth mechanisms to ultrathin low†k polymer insulating layers. Plasma Processes and Polymers, 2020, 17, 2000032.	1.6	1
11	Constitution and Conductivity of Metalloporphyrin Tapes. European Journal of Inorganic Chemistry, 2020, 2020, 1938-1945.	1.0	12
12	Atmospheric-Pressure Synthesis of Atomically Smooth, Conformal, and Ultrathin Low- <i>k</i> Polymer Insulating Layers by Plasma-Initiated Chemical Vapor Deposition. ACS Applied Polymer Materials, 2019, 1, 3304-3312.	2.0	8
13	Reactivity of Nickel(II) Porphyrins in oCVD Processes—Polymerisation, Intramolecular Cyclisation and Chlorination. Chemistry - A European Journal, 2019, 25, 8313-8320.	1.7	19
14	Conductive Directly Fused Poly(Porphyrin) Coatings by Oxidative Chemical Vapour Deposition – From Single―to Tripleâ€Fused. European Journal of Organic Chemistry, 2019, 2019, 2368-2375.	1.2	25
15	Conductive Fused Porphyrin Tapes on Sensitive Substrates by a Chemical Vapor Deposition Approach. Angewandte Chemie - International Edition, 2019, 58, 2103-2108.	7.2	29
16	Conductive Fused Porphyrin Tapes on Sensitive Substrates by a Chemical Vapor Deposition Approach. Angewandte Chemie, 2019, 131, 2125-2130.	1.6	6
17	Thermoresponsive Water-Soluble Polymer Layers and Water-Stable Copolymer Layers Synthesized by Atmospheric Plasma Initiated Chemical Vapor Deposition. ACS Applied Materials & Interfaces, 2019, 11, 1335-1343.	4.0	15
18	Gas Phase Synthesis and Deposition of Directly Fused Porphyrin Tapes: Reaction Mechanism and Central Metal Ion Effect ECS Meeting Abstracts, 2019, , .	0.0	0

NICOLAS D BOSCHER

#	Article	IF	CITATIONS
19	Conductive Directly Fused Metalloporphyrin Coatings By Chemical Vapour Deposition – from Singly to Triply Fused. ECS Meeting Abstracts, 2019, , .	0.0	0
20	Insights in the initiation and termination of poly(alkyl acrylates) synthesized by atmospheric pressure plasmaâ€initiated chemical vapor deposition (APâ€PiCVD). Plasma Processes and Polymers, 2018, 15, 1800027.	1.6	13
21	Roomâ€Temperature Plasmaâ€Assisted Inkjet Printing of Highly Conductive Silver on Paper. Advanced Materials Technologies, 2018, 3, 1700326.	3.0	35
22	Deeper Understanding of Interstitial Boron-Doped Anatase Thin Films as A Multifunctional Layer Through Theory and Experiment. Journal of Physical Chemistry C, 2018, 122, 714-726.	1.5	16
23	Atmospheric plasma oxidative polymerization of ethylene dioxythiophene (EDOT) for the largeâ€scale preparation of highly transparent conducting thin films. Plasma Processes and Polymers, 2018, 15, 1700172.	1.6	18
24	Pulsed plasma initiated chemical vapor deposition (PiCVD) of polymer layers â^' A kinetic model for the description of gas phase to surface interactions in pulsed plasma discharges. Plasma Processes and Polymers, 2018, 15, 1800121.	1.6	9
25	Precursors for Atmospheric Plasmaâ€Enhanced Sintering: Lowâ€Temperature Inkjet Printing of Conductive Copper. ChemistryOpen, 2018, 7, 850-857.	0.9	17
26	Transparent anti-fogging and self-cleaning TiO2/SiO2 thin films on polymer substrates using atmospheric plasma. Scientific Reports, 2018, 8, 9603.	1.6	65
27	Interstitial boron-doped anatase TiO ₂ thin-films on optical fibres: atmospheric pressure-plasma enhanced chemical vapour deposition as the key for functional oxide coatings on temperature-sensitive substrates. Journal of Materials Chemistry A, 2017, 5, 10836-10842.	5.2	25
28	Gas Selective Ultrathin Organic Covalent Networks Synthesized by iPECVD: Does the Central Metal Ion Matter?. Advanced Functional Materials, 2017, 27, 1606652.	7.8	9
29	Atmospheric Pressure Plasma-Initiated Chemical Vapor Deposition (AP-PiCVD) of Poly(alkyl acrylates): An Experimental Study. Macromolecules, 2017, 50, 4351-4362.	2.2	27
30	Photocatalytic Anatase TiO ₂ Thin Films on Polymer Optical Fiber Using Atmospheric-Pressure Plasma. ACS Applied Materials & Interfaces, 2017, 9, 13733-13741.	4.0	42
31	Significance of a Noble Metal Nanolayer on the UV and Visible Light Photocatalytic Activity of Anatase TiO ₂ Thin Films Grown from a Scalable PECVD/PVD Approach. ACS Applied Materials & Interfaces, 2017, 9, 41200-41209.	4.0	42
32	Metal–Organic Covalent Network Chemical Vapor Deposition for Gas Separation. Advanced Materials, 2016, 28, 7479-7485.	11.1	34
33	Gas Separation: Metal–Organic Covalent Network Chemical Vapor Deposition for Gas Separation (Adv.) Tj ETQ	q110.78 11.1	4314 rgBT
34	Interstitial Boron-Doped TiO ₂ Thin Films: The Significant Effect of Boron on TiO ₂ Coatings Grown by Atmospheric Pressure Chemical Vapor Deposition. ACS Applied Materials & Interfaces, 2016, 8, 25024-25029.	4.0	44
35	Chemical vapour deposition of metalloporphyrins: a simple route towards the preparation of gas separation membranes. Journal of Materials Chemistry A, 2016, 4, 18144-18152.	5.2	22
36	Liquid-Assisted Plasma-Enhanced Chemical Vapor Deposition of <i>α</i> -Cyclodextrin/PDMS Composite Thin Film for the Preparation of Interferometric Sensors— Application to the Detection of Benzene in Water. Journal of Nanoscience and Nanotechnology, 2016, 16, 10097-10103.	0.9	3

NICOLAS D BOSCHER

#	Article	IF	CITATIONS
37	Liquidâ€Assisted Plasmaâ€Enhanced Chemical Vapor Deposition of Catechol and Quinoneâ€Functionalized Coatings: Insights into the Surface Chemistry and Morphology. Plasma Processes and Polymers, 2016, 13, 843-856.	1.6	23
38	Fast Atmospheric Plasma Deposition of Bioâ€Inspired Catechol/Quinoneâ€Rich Nanolayers to Immobilize NDMâ€1 Enzymes for Water Treatment. Advanced Materials Interfaces, 2016, 3, 1500520.	1.9	30
39	Functionalizable and electrically conductive thin films formed by oxidative chemical vapor deposition (oCVD) from mixtures of 3-thiopheneethanol (3TE) and ethylene dioxythiophene (EDOT). Journal of Materials Chemistry C, 2016, 4, 3403-3414.	2.7	25
40	Durable and scalable icephobic surfaces: similarities and distinctions from superhydrophobic surfaces. Soft Matter, 2016, 12, 1938-1963.	1.2	272
41	Selfâ€Defensive Coating for Antibiotics Degradation — Atmospheric Pressure Chemical Vapor Deposition of Functional and Conformal Coatings for the Immobilization of Enzymes. Advanced Materials Interfaces, 2015, 2, 1500253.	1.9	13
42	Atmospheric-Pressure Plasma Deposited Epoxy-Rich Thin Films as Platforms for Biomolecule Immobilization-Application for Anti-Biofouling and Xenobiotic-Degrading Surfaces. Plasma Processes and Polymers, 2015, 12, 1208-1219.	1.6	33
43	Atmospheric Pressure Plasma Initiated Chemical Vapor Deposition Using Ultraâ€ S hort Square Pulse Dielectric Barrier Discharge. Plasma Processes and Polymers, 2015, 12, 66-74.	1.6	33
44	Atmospheric Pressure Plasma-Initiated Chemical Vapor Deposition (AP-PiCVD) of Poly(diethylallylphosphate) Coating: A Char-Forming Protective Coating for Cellulosic Textile. ACS Applied Materials & Interfaces, 2014, 6, 18418-18422.	4.0	32
45	Dual Application of (Aqua)(Chlorido)(Porphyrinato)Chromium(III) as Hypersensitive Amine-Triggered ON Switch and for Dioxygen Activation. Inorganic Chemistry, 2014, 53, 11086-11095.	1.9	10
46	A new class of Zn ^{II} and Cr ^{III} porphyrins incorporated into porous polymer matrices via an atmospheric pressure plasma enhanced CVD to form gas sensing layers. Journal of Materials Chemistry A, 2014, 2, 1560-1570.	5.2	11
47	Robust bio-inspired antibacterial surfaces based on the covalent binding of peptides on functional atmospheric plasma thin films. Journal of Materials Chemistry B, 2014, 2, 5168.	2.9	37
48	Optical sensing responses of CrIIICI(TPP)(H2O)-based coatings obtained by an atmospheric pressure plasma method – Application to the detection of volatile amines. Sensors and Actuators B: Chemical, 2014, 191, 553-560.	4.0	16
49	Photocatalytic anatase titanium dioxide thin films deposition by an atmospheric pressure blown arc discharge. Applied Surface Science, 2014, 311, 721-728.	3.1	20
50	A simple and scalable approach towards the preparation of superhydrophobic surfaces – importance of the surface roughness skewness. Journal of Materials Chemistry A, 2014, 2, 5744.	5.2	58
51	A Novel Dry Chemical Path Way for Diene and Dienophile Surface Functionalization toward Thermally Responsive Metal–Polymer Adhesion. ACS Applied Materials & Interfaces, 2013, 5, 8446-8456.	4.0	29
52	αα- and αβ-Zinc-meso-A ₂ B ₂ -tetraarylporphyrins with large optical responses to triethylamine. Dalton Transactions, 2013, 42, 906-917.	1.6	19
53	Atmospheric pressure plasma polymerisation of metalloporphyrins containing mesoporous membranes for gas sensing applications. Surface and Coatings Technology, 2013, 234, 48-52.	2.2	13
54	Atmospheric pressure, low temperature deposition of photocatalytic TiOx thin films with a blown arc discharge. Surface and Coatings Technology, 2013, 232, 159-165.	2.2	25

NICOLAS D BOSCHER

#	Article	IF	CITATIONS
55	Atmospheric pressure plasma modified surfaces for immobilization of antimicrobial nisin peptides. Surface and Coatings Technology, 2013, 218, 152-161.	2.2	53
56	Single-Step Process for the Deposition of High Water Contact Angle and High Water Sliding Angle Surfaces by Atmospheric Pressure Dielectric Barrier Discharge. ACS Applied Materials & Interfaces, 2013, 5, 1053-1060.	4.0	33
57	Plasma Polymer Membranes for Immobilising Metalloporphyrins. Plasma Processes and Polymers, 2013, 10, 336-344.	1.6	19
58	Nitrogen Introduction in ppâ€HMDSO Thin Films Deposited by Atmospheric Pressure Dielectric Barrier Discharge: An XPS Study. Plasma Processes and Polymers, 2012, 9, 316-323.	1.6	22
59	Atmospheric Pressure Pulsed Plasma Copolymerisation of Maleic Anhydride and Vinyltrimethoxysilane: Influence of Electrical Parameters on Chemistry, Morphology and Deposition Rate of the Coatings. Plasma Processes and Polymers, 2012, 9, 435-445.	1.6	51
60	Luminescent lanthanide-based hybrid coatings deposited by atmospheric pressure plasma assisted chemical vapour deposition. Journal of Materials Chemistry, 2011, 21, 18959.	6.7	17
61	Diene functionalisation of atmospheric plasma copolymer thin films. Surface and Coatings Technology, 2011, 205, S466-S469.	2.2	25
62	Influence of cyclic organosilicon precursors on the corrosion of aluminium coated sheet by atmospheric pressure dielectric barrier discharge. Surface and Coatings Technology, 2011, 205, 5350-5357.	2.2	9
63	Advantages of a Pulsed Electrical Excitation Mode on the Corrosion Performance of Organosilicon Thin Films Deposited on Aluminium Foil by Atmospheric Pressure Dielectric Barrier Discharge. Plasma Processes and Polymers, 2010, 7, 163-171.	1.6	22
64	Atmospheric pressure chemical vapour deposition of NbSe2–TiSe2 composite thin films. Applied Surface Science, 2010, 256, 3178-3182.	3.1	10
65	Chemical compositions of organosilicon thin films deposited on aluminium foil by atmospheric pressure dielectric barrier discharge and their electrochemical behaviour. Surface and Coatings Technology, 2010, 205, 2438-2448.	2.2	32
66	Atmospheric pressure chemical vapour deposition of SnSe and SnSe2 thin films on glass. Thin Solid Films, 2008, 516, 4750-4757.	0.8	156
67	Chromium oxyselenide solid solutions from the atmospheric pressure chemical vapour deposition of chromyl chloride and diethylselenide. Journal of Materials Chemistry, 2008, 18, 1667.	6.7	15
68	Photocatalytic Oxidation of Deposited Sulfur and Gaseous Sulfur Dioxide by TiO2 Films. Journal of Physical Chemistry C, 2007, 111, 5520-5525.	1.5	18
69	Synthesis and Charaterisation of Chromium Oxyselenide (Cr2Se0.7O2.3) Formed from Chemical Vapour Synthesis: A New Antiferromagnet. European Journal of Inorganic Chemistry, 2007, 2007, 4579-4582.	1.0	7
70	Atmospheric pressure chemical vapour deposition of vanadium diselenide thin films. Applied Surface Science, 2007, 253, 6041-6046.	3.1	64
71	Atmospheric pressure chemical vapor deposition of WSe2thin films on glass—highly hydrophobic sticky surfaces. Journal of Materials Chemistry, 2006, 16, 122-127.	6.7	128
72	Atmospheric Pressure CVD of TiSe2 Thin Films on Glass. Chemical Vapor Deposition, 2006, 12, 54-58.	1.4	25

#	Article	IF	CITATIONS
73	Atmospheric Pressure CVD of Molybdenum Diselenide Films on Glass. Chemical Vapor Deposition, 2006, 12, 692-698.	1.4	53
74	Atmospheric Pressure Chemical Vapour Deposition of NbSe2 Thin Films on Glass. European Journal of Inorganic Chemistry, 2006, 2006, 1255-1259.	1.0	48