John G Clohessy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/89490/publications.pdf

Version: 2024-02-01

57 4,798 32 54
papers citations h-index g-index

62 62 10151 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Genetic ablation of <scp><i>FASN</i></scp> attenuates the invasive potential of prostate cancer driven by <scp><i>Pten</i></scp> loss. Journal of Pathology, 2021, 253, 292-303.	2.1	13
2	Dual DNA and protein tagging of open chromatin unveils dynamics of epigenomic landscapes in leukemia. Nature Methods, 2021, 18, 293-302.	9.0	9
3	Identification of a targetable KRAS-mutant epithelial population in non-small cell lung cancer. Communications Biology, 2021, 4, 370.	2.0	12
4	NF-κB Blockade with Oral Administration of Dimethylaminoparthenolide (DMAPT), Delays Prostate Cancer Resistance to Androgen Receptor (AR) Inhibition and Inhibits AR Variants. Molecular Cancer Research, 2021, 19, 1137-1145.	1.5	9
5	Targeting Pin1 renders pancreatic cancer eradicable by synergizing with immunochemotherapy. Cell, 2021, 184, 4753-4771.e27.	13.5	99
6	Optimized RNA-targeting CRISPR/Cas13d technology outperforms shRNA in identifying functional circRNAs. Genome Biology, 2021, 22, 41.	3.8	75
7	Cabozantinib Unlocks Efficient <i>In Vivo</i> Targeted Delivery of Neutrophil-Loaded Nanoparticles into Murine Prostate Tumors. Molecular Cancer Therapeutics, 2021, 20, 438-449.	1.9	10
8	Synergism between CAR-T Cells and a Personalized Tumor Vaccine in Hematological Malignances. Blood, 2021, 138, 737-737.	0.6	0
9	WWP1 inactivation enhances efficacy of PI3K inhibitors while suppressing their toxicities in breast cancer models. Journal of Clinical Investigation, 2021, 131, .	3.9	7
10	The Tug1 lncRNA locus is essential for male fertility. Genome Biology, 2020, 21, 237.	3.8	61
11	Targeting microtubule sensitizes drug resistant lung cancer cells to lysosomal pathway inhibitors. Theranostics, 2020, 10, 2727-2743.	4.6	5
12	PDX-derived organoids model in vivo drug response and secrete biomarkers. JCI Insight, 2020, 5, .	2.3	66
13	CAV1 - GLUT3 signaling is important for cellular energy and can be targeted by Atorvastatin in Non-Small Cell Lung Cancer. Theranostics, 2019, 9, 6157-6174.	4.6	32
14	Intragenic antagonistic roles of protein and circRNA in tumorigenesis. Cell Research, 2019, 29, 628-640.	5.7	121
15	Reactivation of PTEN tumor suppressor for cancer treatment through inhibition of a MYC-WWP1 inhibitory pathway. Science, 2019, 364, .	6.0	194
16	Vulnerabilities in mIDH2 AML confer sensitivity to APL-like targeted combination therapy. Cell Research, 2019, 29, 446-459.	5.7	32
17	Germline NPM1 mutations lead to altered rRNA $2\hat{a}\in^2$ -O-methylation and cause dyskeratosis congenita. Nature Genetics, 2019, 51, 1518-1529.	9.4	84
18	An Integrated Genome-wide CRISPRa Approach to Functionalize IncRNAs in Drug Resistance. Cell, 2018, 173, 649-664.e20.	13.5	238

#	Article	IF	CITATIONS
19	Fatty acid synthase mediates EGFR palmitoylation in EGFR mutated nonâ€small cell lung cancer. EMBO Molecular Medicine, 2018, 10, .	3.3	109
20	Deregulated PP1 \hat{l}_{\pm} phosphatase activity towards MAPK activation is antagonized by a tumor suppressive failsafe mechanism. Nature Communications, 2018, 9, 159.	5.8	39
21	An aberrant SREBP-dependent lipogenic program promotes metastatic prostate cancer. Nature Genetics, 2018, 50, 206-218.	9.4	229
22	Diverse genetic-driven immune landscapes dictate tumor progression through distinct mechanisms. Nature Medicine, 2018, 24, 165-175.	15.2	137
23	The Mouse Hospital and Its Integration in Ultra-Precision Approaches to Cancer Care. Frontiers in Oncology, 2018, 8, 340.	1.3	20
24	Pericytes Elicit Resistance to Vemurafenib and Sorafenib Therapy in Thyroid Carcinoma via the TSP-1/TGFÎ ² 1 Axis. Clinical Cancer Research, 2018, 24, 6078-6097.	3.2	43
25	Cabozantinib Eradicates Advanced Murine Prostate Cancer by Activating Antitumor Innate Immunity. Cancer Discovery, 2017, 7, 750-765.	7.7	112
26	Nanoformulation of Olaparib Amplifies PARP Inhibition and Sensitizes <i>PTEN/TP53-</i> Postate Cancer to Radiation. Molecular Cancer Therapeutics, 2017, 16, 1279-1289.	1.9	37
27	SPAR, a IncRNA encoded mTORC1 inhibitor. Cell Cycle, 2017, 16, 815-816.	1.3	22
28	mTORC1 and muscle regeneration are regulated by the LINC00961-encoded SPAR polypeptide. Nature, 2017, 541, 228-232.	13.7	503
29	Stress from Nucleotide Depletion Activates the Transcriptional Regulator HEXIM1 to Suppress Melanoma. Molecular Cell, 2016, 62, 34-46.	4.5	71
30	The pleiotropic role of non-coding genes in development and cancer. Current Opinion in Cell Biology, 2016, 43, 104-113.	2.6	19
31	<i>In Vivo</i> Role of INPP4B in Tumor and Metastasis Suppression through Regulation of PI3K–AKT Signaling at Endosomes. Cancer Discovery, 2015, 5, 740-751.	7.7	86
32	Mouse hospital and co-clinical trial projectâ€"from bench to bedside. Nature Reviews Clinical Oncology, 2015, 12, 491-498.	12.5	109
33	Of Model Pets and Cancer Models: An Introduction to Mouse Models of Cancer. Cold Spring Harbor Protocols, 2014, 2014, pdb.top069757.	0.2	13
34	NPMc+ cooperates with Flt3/ITD mutations to cause acute leukemia recapitulating human disease. Experimental Hematology, 2014, 42, 101-113.e5.	0.2	32
35	Role of BRAFV600E in the First Preclinical Model of Multifocal Infiltrating Myopericytoma Development and Microenvironment. Journal of the National Cancer Institute, 2014, 106, .	3.0	31
36	Vulnerabilities of <i>PTEN</i> – <i>TP53</i> Deficient Prostate Cancers to Compound PARP–PI3K Inhibition. Cancer Discovery, 2014, 4, 896-904.	7.7	88

#	Article	IF	CITATIONS
37	hnRNP K Overexpression Synergizes with Mutant NPM1 to Drive Acute Myeloid Leukemia Progression. Blood, 2014, 124, 2382-2382.	0.6	1
38	Role of aberrant PI3K pathway activation in gallbladder tumorigenesis. Oncotarget, 2014, 5, 894-900.	0.8	47
39	Hematological Malignancies and Premalignant Conditions., 2014,, 467-486.		1
40	Characterization and Analysis of the Composition and Dynamics of the Mammalian Riboproteome. Cell Reports, 2013, 4, 1276-1287.	2.9	50
41	A co-clinical approach identifies mechanisms and potential therapies for androgen deprivation resistance in prostate cancer. Nature Genetics, 2013, 45, 747-755.	9.4	138
42	Infrastructure Needs for Translational Integration of Mouse and Human Trials. Cold Spring Harbor Protocols, 2013, 2013, pdb.top078782-pdb.top078782.	0.2	8
43	The RNA Binding Protein ESRP1 Fine-Tunes the Expression of Pluripotency-Related Factors in Mouse Embryonic Stem Cells. PLoS ONE, 2013, 8, e72300.	1.1	39
44	Co-Expression Of The MUC1 Oncoprotein and CD34 On Primary Myeloma Bone Marrow Cells Identifies a Population With Myeloma Initiating Potential. Blood, 2013, 122, 127-127.	0.6	0
45	Found in translation of mTOR signaling. Cell Research, 2012, 22, 1315-1318.	5.7	12
46	Pro-senescence therapy for cancer treatment. Nature Reviews Cancer, 2011, 11, 503-511.	12.8	400
46	Pro-senescence therapy for cancer treatment. Nature Reviews Cancer, 2011, 11, 503-511. Differential Expression of S6K2 Dictates Tissue-Specific Requirement for S6K1 in Mediating Aberrant mTORC1 Signaling and Tumorigenesis. Cancer Research, 2011, 71, 3669-3675.	12.8	400
	Differential Expression of S6K2 Dictates Tissue-Specific Requirement for S6K1 in Mediating Aberrant		
47	Differential Expression of S6K2 Dictates Tissue-Specific Requirement for S6K1 in Mediating Aberrant mTORC1 Signaling and Tumorigenesis. Cancer Research, 2011, 71, 3669-3675. The cytoplasmic NPM mutant induces myeloproliferation in a transgenic mouse model. Blood, 2010, 115,	0.4	19
47	Differential Expression of S6K2 Dictates Tissue-Specific Requirement for S6K1 in Mediating Aberrant mTORC1 Signaling and Tumorigenesis. Cancer Research, 2011, 71, 3669-3675. The cytoplasmic NPM mutant induces myeloproliferation in a transgenic mouse model. Blood, 2010, 115, 3341-3345.	0.4	19 82
47 48 49	Differential Expression of S6K2 Dictates Tissue-Specific Requirement for S6K1 in Mediating Aberrant mTORC1 Signaling and Tumorigenesis. Cancer Research, 2011, 71, 3669-3675. The cytoplasmic NPM mutant induces myeloproliferation in a transgenic mouse model. Blood, 2010, 115, 3341-3345. Subtle variations in Pten dose determine cancer susceptibility. Nature Genetics, 2010, 42, 454-458. A novel type of cellular senescence that can be enhanced in mouse models and human tumor	0.4 0.6 9.4	19 82 506
47 48 49 50	Differential Expression of S6K2 Dictates Tissue-Specific Requirement for S6K1 in Mediating Aberrant mTORC1 Signaling and Tumorigenesis. Cancer Research, 2011, 71, 3669-3675. The cytoplasmic NPM mutant induces myeloproliferation in a transgenic mouse model. Blood, 2010, 115, 3341-3345. Subtle variations in Pten dose determine cancer susceptibility. Nature Genetics, 2010, 42, 454-458. A novel type of cellular senescence that can be enhanced in mouse models and human tumor xenografts to suppress prostate tumorigenesis. Journal of Clinical Investigation, 2010, 120, 681-693. The Role of Nucleophosmin In Hematopoietic Stem Cells and the Pathogenesis of Myelodysplastic	0.4 0.6 9.4 3.9	19 82 506 290
47 48 49 50	Differential Expression of S6K2 Dictates Tissue-Specific Requirement for S6K1 in Mediating Aberrant mTORC1 Signaling and Tumorigenesis. Cancer Research, 2011, 71, 3669-3675. The cytoplasmic NPM mutant induces myeloproliferation in a transgenic mouse model. Blood, 2010, 115, 3341-3345. Subtle variations in Pten dose determine cancer susceptibility. Nature Genetics, 2010, 42, 454-458. A novel type of cellular senescence that can be enhanced in mouse models and human tumor xenografts to suppress prostate tumorigenesis. Journal of Clinical Investigation, 2010, 120, 681-693. The Role of Nucleophosmin In Hematopoietic Stem Cells and the Pathogenesis of Myelodysplastic Syndrome. Blood, 2010, 116, 95-95.	0.4 0.6 9.4 3.9	19 82 506 290

#	Article	IF	CITATIONS
55	Npm1 is a haploinsufficient suppressor of myeloid and lymphoid malignancies in the mouse. Blood, 2008, 111, 3859-3862.	0.6	120
56	Mcl-1 Interacts with Truncated Bid and Inhibits Its Induction of Cytochrome c Release and Its Role in Receptor-mediated Apoptosis. Journal of Biological Chemistry, 2006, 281, 5750-5759.	1.6	155
57	Characterisation of Mcl-1 cleavage during apoptosis of haematopoietic cells. British Journal of Haematology, 2004, 125, 655-665.	1.2	69