Andr Mateus

List of Publications by Citations

Source: https://exaly.com/author-pdf/894895/andre-mateus-publications-by-citations.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

18 42 1,544 39 g-index h-index citations papers 2,364 20.1 47 4.71 L-index ext. papers ext. citations avg, IF

#	Paper	IF	Citations
42	A new antibiotic selectively kills Gram-negative pathogens. <i>Nature</i> , 2019 , 576, 459-464	50.4	202
41	Species-specific activity of antibacterial drug combinations. <i>Nature</i> , 2018 , 559, 259-263	50.4	137
40	Pervasive Protein Thermal Stability Variation during the Cell Cycle. <i>Cell</i> , 2018 , 173, 1495-1507.e18	56.2	109
39	Rapid measurement of intracellular unbound drug concentrations. <i>Molecular Pharmaceutics</i> , 2013 , 10, 2467-78	5.6	108
38	The functional landscape of the human phosphoproteome. <i>Nature Biotechnology</i> , 2020 , 38, 365-373	44.5	106
37	CETSA screening identifies known and novel thymidylate synthase inhibitors and slow intracellular activation of 5-fluorouracil. <i>Nature Communications</i> , 2016 , 7, 11040	17.4	96
36	A Dual-Mechanism Antibiotic Kills Gram-Negative Bacteria and Avoids Drug Resistance. <i>Cell</i> , 2020 , 181, 1518-1532.e14	56.2	88
35	Thermal proteome profiling in bacteria: probing protein state. <i>Molecular Systems Biology</i> , 2018 , 14, e82	4 <u>2</u> 2.2	82
34	Thermal proteome profiling: unbiased assessment of protein state through heat-induced stability changes. <i>Proteome Science</i> , 2016 , 15, 13	2.6	62
33	Prediction of intracellular exposure bridges the gap between target- and cell-based drug discovery. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, E6231-E6239	9 ^{11.5}	60
32	Thermal proteome profiling for interrogating protein interactions. <i>Molecular Systems Biology</i> , 2020 , 16, e9232	12.2	53
31	Intracellular drug bioavailability: a new predictor of system dependent drug disposition. <i>Scientific Reports</i> , 2017 , 7, 43047	4.9	49
30	Direct Measurement of Intracellular Compound Concentration by RapidFire Mass Spectrometry Offers Insights into Cell Permeability. <i>Journal of Biomolecular Screening</i> , 2016 , 21, 156-64		43
29	Mechanistic Modeling of Pitavastatin Disposition in Sandwich-Cultured Human Hepatocytes: A Proteomics-Informed Bottom-Up Approach. <i>Drug Metabolism and Disposition</i> , 2016 , 44, 505-16	4	37
28	Outer membrane lipoprotein NlpI scaffolds peptidoglycan hydrolases within multi-enzyme complexes in Escherichia coli. <i>EMBO Journal</i> , 2020 , 39, e102246	13	36
27	Assessment of pharmacokinetic changes of meropenem during therapy in septic critically ill patients. <i>BMC Pharmacology & Documents (Note: Appendix and Pharmacology & Documents)</i> patients. <i>BMC Pharmacology & Documents (Note: Appendix and Pharmacology & Documents)</i> patients.	2.6	30
26	Bioaccumulation of therapeutic drugs by human gut bacteria. <i>Nature</i> , 2021 , 597, 533-538	50.4	29

(2021-2014)

25	A high-throughput cell-based method to predict the unbound drug fraction in the brain. <i>Journal of Medicinal Chemistry</i> , 2014 , 57, 3005-10	8.3	24
24	Spatiotemporal proteomics uncovers cathepsin-dependent macrophage cell death during Salmonella infection. <i>Nature Microbiology</i> , 2020 , 5, 1119-1133	26.6	17
23	Intracellular Drug Bioavailability: Effect of Neutral Lipids and Phospholipids. <i>Molecular Pharmaceutics</i> , 2018 , 15, 2224-2233	5.6	17
22	Bacterial retrons encode tripartite toxin/antitoxin systems		15
21	Phage proteins block and trigger retron toxin/antitoxin systems		15
20	Impact of phosphorylation on thermal stability of proteins. <i>Nature Methods</i> , 2021 , 18, 757-759	21.6	15
19	Piperazin-1-ylpyridazine Derivatives Are a Novel Class of Human dCTP Pyrophosphatase 1 Inhibitors. <i>Journal of Medicinal Chemistry</i> , 2017 , 60, 4279-4292	8.3	14
18	The functional proteome landscape of Escherichia coli. <i>Nature</i> , 2020 , 588, 473-478	50.4	14
17	Identification of Triazolothiadiazoles as Potent Inhibitors of the dCTP Pyrophosphatase 1. <i>Journal of Medicinal Chemistry</i> , 2017 , 60, 2148-2154	8.3	12
16	Exploiting loss of heterozygosity for allele-selective colorectal cancer chemotherapy. <i>Nature Communications</i> , 2020 , 11, 1308	17.4	11
15	Improved predictions of time-dependent drug-drug interactions by determination of cytosolic drug concentrations. <i>Scientific Reports</i> , 2019 , 9, 5850	4.9	10
14	A computational method for detection of ligand-binding proteins from dose range thermal proteome profiles. <i>Nature Communications</i> , 2020 , 11, 5783	17.4	8
13	Impact of phosphorylation on thermal stability of proteins		7
12	Towards a systematic map of the functional role of protein phosphorylation		6
11	The outer membrane lipoprotein NlpI nucleates hydrolases within peptidoglycan multi-enzyme complexes inEscherichia coli		5
10	SARS-CoV-2 infection remodels the host protein thermal stability landscape. <i>Molecular Systems Biology</i> , 2021 , 17, e10188	12.2	5
9	Isocotoin suppresses hepatitis E virus replication through inhibition of heat shock protein 90. <i>Antiviral Research</i> , 2021 , 185, 104997	10.8	4
8	High-throughput functional characterization of protein phosphorylation sites in yeast. <i>Nature Biotechnology</i> , 2021 ,	44.5	3

7	Rtpca: an R package for differential thermal proximity coaggregation analysis. <i>Bioinformatics</i> , 2021 , 37, 431-433	7.2	3	
6	Drug Target Identification in Tissues by Thermal Proteome Profiling. <i>Annual Review of Pharmacology and Toxicology</i> , 2021 ,	17.9	2	
5	A dual-mechanism antibiotic targets Gram-negative bacteria and avoids drug resistance		1	
4	Computational analysis of ligand dose range thermal proteome profiles		1	
3	The rise of proteome-wide biophysics. <i>Molecular Systems Biology</i> , 2021 , 17, e10442	12.2	1	
2	Transcriptional and Post-Transcriptional Polar Effects in Bacterial Gene Deletion Libraries. <i>MSystems</i> , 2021 , 6, e0081321	7.6	1	
1	Hepatocyte size fractionation allows dissection of human liver zonation. <i>Journal of Cellular Physiology</i> , 2021 , 236, 5885-5894	7	O	