Hye Ryung Byon

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8948867/hye-ryung-byon-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

43	1,955	19	44
papers	citations	h-index	g-index
49	2,399	13.1	5.21
ext. papers	ext. citations	avg, IF	L-index

#	Paper	IF	Citations
43	Machine learning assisted synthesis of lithium-ion batteries cathode materials. <i>Nano Energy</i> , 2022 , 98, 107214	17.1	2
42	Nanometer-Scale Surface Roughness of a 3-D Cu Substrate Promoting Li Nucleation in Li-Metal Batteries. <i>ACS Applied Energy Materials</i> , 2021 , 4, 2644-2651	6.1	5
41	Thiazole-Linked Covalent Organic Framework Promoting Fast Two-Electron Transfer for Lithium-Organic Batteries. <i>Advanced Energy Materials</i> , 2021 , 11, 2003735	21.8	17
40	Tubular MoSSe/carbon nanotube electrodes for hybrid-ion capacitors. <i>Electrochimica Acta</i> , 2021 , 374, 137971	6.7	1
39	Singlet Oxygen in Lithium Dxygen Batteries. Batteries and Supercaps, 2021, 4, 286-293	5.6	6
38	Reducing Time to Discovery: Materials and Molecular Modeling, Imaging, Informatics, and Integration. <i>ACS Nano</i> , 2021 , 15, 3971-3995	16.7	11
37	Sodium fluoride-rich solid electrolyte interphase for sodium the land sodium bxygen batteries. Bulletin of the Korean Chemical Society, 2021, 42, 1519	1.2	3
36	Systematic Designs of Dicationic Heteroarylpyridiniums as Negolytes for Nonaqueous Redox Flow Batteries. <i>ACS Energy Letters</i> , 2021 , 6, 3390-3397	20.1	3
35	Coverage of capping ligands determining the selectivity of multi-carbon products and morphological evolution of Cu nanocatalysts in electrochemical reduction of CO2. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 11210-11218	13	2
34	Understanding the interfacial reactions of LiCoO2 positive electrodes in aqueous lithium-ion batteries. <i>Materials Chemistry Frontiers</i> , 2021 , 5, 3657-3663	7.8	4
33	Nanostructured LiMnO with LiPO Integrated at the Atomic Scale for High-Energy Electrode Materials with Reversible Anionic Redox. <i>ACS Central Science</i> , 2020 , 6, 2326-2338	16.8	12
32	Lithium-Air Batteries: Air-Breathing Challenges and Perspective. ACS Nano, 2020, 14, 14549-14578	16.7	41
31	Naphthalene diimide as a two-electron anolyte for aqueous and neutral pH redox flow batteries. Journal of Materials Chemistry A, 2020 , 8, 11218-11223	13	14
30	Oxidation Stability of Organic Redox Mediators as Mobile Catalysts in Lithium Dxygen Batteries. <i>ACS Energy Letters</i> , 2020 , 5, 2122-2129	20.1	18
29	Promoting lithium electrodeposition towards the bottom of 3-D copper meshes in lithium-based batteries. <i>Journal of Power Sources</i> , 2020 , 472, 228495	8.9	5
28	Mechanistic Study Revealing the Role of the Br3/\(\textit{B}\)Br2 Redox Couple in CO2-Assisted Li\(\textit{D}\)2 Batteries. Advanced Energy Materials, 2020 , 10, 1903486	21.8	19
27	Synthesis of Redox-Active Phenanthrene-Fused Heteroarenes by Palladium-Catalyzed C-H Annulation. <i>Organic Letters</i> , 2020 , 22, 1280-1285	6.2	15

(2016-2020)

26	Unveiling the Underlying Mechanism of CO2-Assisted Li D 2 Batteries in the Presence of a Br3 /B r2 Redox Couple. <i>ECS Meeting Abstracts</i> , 2020 , MA2020-01, 442-442	Ο	
25	Charge Compensation Mechanism of Lithium-Excess Metal Oxides with Different Covalent and Ionic Characters Revealed by Operando Soft and Hard X-ray Absorption Spectroscopy. <i>Chemistry of Materials</i> , 2020 , 32, 139-147	9.6	21
24	Effects of Zn2+ and H+ Association with Naphthalene Diimide Electrodes for Aqueous Zn-Ion Batteries. <i>Chemistry of Materials</i> , 2020 , 32, 6990-6997	9.6	27
23	One-pot production of ceria nanosheet-supported PtNi alloy nanodendrites with high catalytic performance toward methanol oxidation and oxygen reduction. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 25842-25849	13	13
22	Solid Electrolyte Interphase Revealing Interfacial Electrochemistry on Highly Oriented Pyrolytic Graphite in a Water-in-Salt Electrolyte. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 20135-20142	3.8	7
21	A dendrite- and oxygen-proof protective layer for lithium metal in lithiumBxygen batteries. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 3857-3862	13	48
20	Trapping of Stable [4n+1] Œlectron Species from Peripherally Substituted, Conformationally Rigid, Antiaromatic Hexaphyrins. <i>Chemistry - A European Journal</i> , 2019 , 25, 3525-3531	4.8	8
19	Aqueous organic redox flow batteries. <i>Nano Research</i> , 2019 , 12, 1988-2001	10	66
18	Lithium Oxygen Battery 2019 , 1-23		
17	Triple Hierarchical Porous Carbon Spheres as Effective Cathodes for LiD2 Batteries. <i>Journal of the Electrochemical Society</i> , 2019 , 166, A455-A463	3.9	5
16	Mutual Conservation of Redox Mediator and Singlet Oxygen Quencher in Lithium Dxygen Batteries. ACS Catalysis, 2019 , 9, 9914-9922	13.1	28
15	Nanostructuring one-dimensional and amorphous lithium peroxide for high round-trip efficiency in lithium-oxygen batteries. <i>Nature Communications</i> , 2018 , 9, 680	17.4	50
14	Designing Redox-Stable Cobalt P olypyridyl Complexes for Redox Flow Batteries: Spin-Crossover Delocalizes Excess Charge. <i>Advanced Energy Materials</i> , 2018 , 8, 1702897	21.8	26
13	Critically Examining the Role of Nanocatalysts in LiD2 Batteries: Viability toward Suppression of Recharge Overpotential, Rechargeability, and Cyclability. <i>ACS Energy Letters</i> , 2018 , 3, 592-597	20.1	65
12	Instability of a Noncrystalline NaO2 Film in NaD2 Batteries: The Controversial Effect of the RuO2 Catalyst. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 19678-19686	3.8	6
11	Determining the Facile Routes for Oxygen Evolution Reaction by In Situ Probing of Li-O Cells with Conformal LiO Films. <i>Journal of the American Chemical Society</i> , 2018 , 140, 6190-6193	16.4	48
10	Brush-Like Cobalt Nitride Anchored Carbon Nanofiber Membrane: Current Collector-Catalyst Integrated Cathode for Long Cycle Li-O Batteries. <i>ACS Nano</i> , 2018 , 12, 128-139	16.7	175

8	Unexpected Li2O2 Film Growth on Carbon Nanotube Electrodes with CeO2 Nanoparticles in Li-O2 Batteries. <i>Nano Letters</i> , 2016 , 16, 2969-74	11.5	121
7	High Energy Efficiency and Stability for Photoassisted Aqueous Lithium Ibdine Redox Batteries. <i>ACS Energy Letters</i> , 2016 , 1, 806-813	20.1	35
6	Nanoporous NiO Plates with a Unique Role for Promoted Oxidation of Carbonate and Carboxylate Species in the LiD2 Battery. <i>Chemistry of Materials</i> , 2015 , 27, 2234-2241	9.6	88
5	A chemistry and material perspective on lithium redox flow batteries towards high-density electrical energy storage. <i>Chemical Society Reviews</i> , 2015 , 44, 7968-96	58.5	322
4	A structured three-dimensional polymer electrolyte with enlarged active reaction zone for Li-O2 batteries. <i>Scientific Reports</i> , 2014 , 4, 7127	4.9	52
3	In situ AFM imaging of Li-O2 electrochemical reaction on highly oriented pyrolytic graphite with ether-based electrolyte. <i>Journal of the American Chemical Society</i> , 2013 , 135, 10870-6	16.4	93
2	Promoting formation of noncrystalline Li2O2 in the Li-O2 battery with RuO2 nanoparticles. <i>Nano Letters</i> , 2013 , 13, 4679-84	11.5	392
1	Advances in electrochemical energy storage with covalent organic frameworks. <i>Materials Advances</i> ,	3.3	12