
Hye Ryung Byon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8948867/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Promoting Formation of Noncrystalline Li ₂ O ₂ in the Li–O ₂ Battery with RuO ₂ Nanoparticles. Nano Letters, 2013, 13, 4679-4684.	9.1	437
2	A chemistry and material perspective on lithium redox flow batteries towards high-density electrical energy storage. Chemical Society Reviews, 2015, 44, 7968-7996.	38.1	388
3	Brush-Like Cobalt Nitride Anchored Carbon Nanofiber Membrane: Current Collector-Catalyst Integrated Cathode for Long Cycle Li–O ₂ Batteries. ACS Nano, 2018, 12, 128-139.	14.6	230
4	Unexpected Li ₂ O ₂ Film Growth on Carbon Nanotube Electrodes with CeO ₂ Nanoparticles in Li–O ₂ Batteries. Nano Letters, 2016, 16, 2969-2974.	9.1	138
5	Aqueous organic redox flow batteries. Nano Research, 2019, 12, 1988-2001.	10.4	138
6	Lithium–Air Batteries: Air-Breathing Challenges and Perspective. ACS Nano, 2020, 14, 14549-14578.	14.6	126
7	In Situ AFM Imaging of Li–O ₂ Electrochemical Reaction on Highly Oriented Pyrolytic Graphite with Ether-Based Electrolyte. Journal of the American Chemical Society, 2013, 135, 10870-10876.	13.7	109
8	Nanoporous NiO Plates with a Unique Role for Promoted Oxidation of Carbonate and Carboxylate Species in the Li–O ₂ Battery. Chemistry of Materials, 2015, 27, 2234-2241.	6.7	104
9	Structurally Tuning Li ₂ 0 ₂ by Controlling the Surface Properties of Carbon Electrodes: Implications for Li–O ₂ Batteries. Chemistry of Materials, 2016, 28, 8006-8015.	6.7	86
10	Nanostructuring one-dimensional and amorphous lithium peroxide for high round-trip efficiency in lithium-oxygen batteries. Nature Communications, 2018, 9, 680.	12.8	85
11	Critically Examining the Role of Nanocatalysts in Li–O ₂ Batteries: Viability toward Suppression of Recharge Overpotential, Rechargeability, and Cyclability. ACS Energy Letters, 2018, 3, 592-597.	17.4	82
12	Effects of Zn ²⁺ and H ⁺ Association with Naphthalene Diimide Electrodes for Aqueous Zn-Ion Batteries. Chemistry of Materials, 2020, 32, 6990-6997.	6.7	80
13	Thiazoleâ€Linked Covalent Organic Framework Promoting Fast Twoâ€Electron Transfer for Lithiumâ€Organic Batteries. Advanced Energy Materials, 2021, 11, 2003735.	19.5	78
14	Determining the Facile Routes for Oxygen Evolution Reaction by <i>In Situ</i> Probing of Li–O ₂ Cells with Conformal Li ₂ O ₂ Films. Journal of the American Chemical Society, 2018, 140, 6190-6193.	13.7	64
15	A structured three-dimensional polymer electrolyte with enlarged active reaction zone for Li–O2 batteries. Scientific Reports, 2014, 4, 7127.	3.3	61
16	A dendrite- and oxygen-proof protective layer for lithium metal in lithium–oxygen batteries. Journal of Materials Chemistry A, 2019, 7, 3857-3862.	10.3	61
17	High Energy Efficiency and Stability for Photoassisted Aqueous Lithium–Iodine Redox Batteries. ACS Energy Letters, 2016, 1, 806-813.	17.4	52
18	One-pot production of ceria nanosheet-supported PtNi alloy nanodendrites with high catalytic performance toward methanol oxidation and oxygen reduction. Journal of Materials Chemistry A, 2020, 8, 25842-25849.	10.3	41

Hye Ryung Byon

#	Article	IF	CITATIONS
19	Designing Redoxâ€Stable Cobalt–Polypyridyl Complexes for Redox Flow Batteries: Spinâ€Crossover Delocalizes Excess Charge. Advanced Energy Materials, 2018, 8, 1702897.	19.5	38
20	Charge Compensation Mechanism of Lithium-Excess Metal Oxides with Different Covalent and Ionic Characters Revealed by <i>Operando</i> Soft and Hard X-ray Absorption Spectroscopy. Chemistry of Materials, 2020, 32, 139-147.	6.7	37
21	Reducing Time to Discovery: Materials and Molecular Modeling, Imaging, Informatics, and Integration. ACS Nano, 2021, 15, 3971-3995.	14.6	36
22	Mutual Conservation of Redox Mediator and Singlet Oxygen Quencher in Lithium–Oxygen Batteries. ACS Catalysis, 2019, 9, 9914-9922.	11.2	33
23	Oxidation Stability of Organic Redox Mediators as Mobile Catalysts in Lithium–Oxygen Batteries. ACS Energy Letters, 2020, 5, 2122-2129.	17.4	31
24	Naphthalene diimide as a two-electron anolyte for aqueous and neutral pH redox flow batteries. Journal of Materials Chemistry A, 2020, 8, 11218-11223.	10.3	30
25	Mechanistic Study Revealing the Role of the Br ₃ ^{â^'} /Br ₂ Redox Couple in CO ₂ â€Assisted Li–O ₂ Batteries. Advanced Energy Materials, 2020, 10, 1903486.	19.5	29
26	Advances in electrochemical energy storage with covalent organic frameworks. Materials Advances, 0, , .	5.4	26
27	Machine learning assisted synthesis of lithium-ion batteries cathode materials. Nano Energy, 2022, 98, 107214.	16.0	24
28	Synthesis of Redox-Active Phenanthrene-Fused Heteroarenes by Palladium-Catalyzed C–H Annulation. Organic Letters, 2020, 22, 1280-1285.	4.6	23
29	Nanostructured LiMnO ₂ with Li ₃ PO ₄ Integrated at the Atomic Scale for High-Energy Electrode Materials with Reversible Anionic Redox. ACS Central Science, 2020, 6, 2326-2338.	11.3	22
30	Systematic Designs of Dicationic Heteroarylpyridiniums as Negolytes for Nonaqueous Redox Flow Batteries. ACS Energy Letters, 2021, 6, 3390-3397.	17.4	21
31	Nanometer-Scale Surface Roughness of a 3-D Cu Substrate Promoting Li Nucleation in Li-Metal Batteries. ACS Applied Energy Materials, 2021, 4, 2644-2651.	5.1	14
32	Singlet Oxygen in Lithiumâ^'Oxygen Batteries. Batteries and Supercaps, 2021, 4, 286-293.	4.7	13
33	Sodium fluorideâ€rich solid electrolyte interphase for sodium–metal and sodium–oxygen batteries. Bulletin of the Korean Chemical Society, 2021, 42, 1519-1523.	1.9	13
34	Trapping of Stable [4 <i>n</i> +1] Ï€â€Electron Species from Peripherally Substituted, Conformationally Rigid, Antiaromatic Hexaphyrins. Chemistry - A European Journal, 2019, 25, 3525-3531.	3.3	12
35	Solid Electrolyte Interphase Revealing Interfacial Electrochemistry on Highly Oriented Pyrolytic Graphite in a Water-in-Salt Electrolyte. Journal of Physical Chemistry C, 2020, 124, 20135-20142.	3.1	12
36	Understanding the interfacial reactions of LiCoO ₂ positive electrodes in aqueous lithium-ion batteries. Materials Chemistry Frontiers, 2021, 5, 3657-3663.	5.9	11

Hye Ryung Byon

#	Article	IF	CITATIONS
37	Alteration of oxygen evolution mechanisms in layered LiCoO ₂ structures by intercalation of alkali metal ions. Journal of Materials Chemistry A, 2022, 10, 10967-10978.	10.3	10
38	Unexpectedly Large Contribution of Oxygen to Charge Compensation Triggered by Structural Disordering: Detailed Experimental and Theoretical Study on a Li ₃ NbO ₄ –NiO Binary System. ACS Central Science, 2022, 8, 775-794.	11.3	10
39	Promoting lithium electrodeposition towards the bottom of 3-D copper meshes in lithium-based batteries. Journal of Power Sources, 2020, 472, 228495.	7.8	9
40	Triple Hierarchical Porous Carbon Spheres as Effective Cathodes for Li–O ₂ Batteries. Journal of the Electrochemical Society, 2019, 166, A455-A463.	2.9	8
41	Coverage of capping ligands determining the selectivity of multi-carbon products and morphological evolution of Cu nanocatalysts in electrochemical reduction of CO ₂ . Journal of Materials Chemistry A, 2021, 9, 11210-11218.	10.3	8
42	Instability of a Noncrystalline NaO ₂ Film in Na–O ₂ Batteries: The Controversial Effect of the RuO ₂ Catalyst. Journal of Physical Chemistry C, 2018, 122, 19678-19686.	3.1	7
43	Tubular MoSSe/carbon nanotube electrodes for hybrid-ion capacitors. Electrochimica Acta, 2021, 374, 137971.	5.2	7
44	Investigating the Promise of Incorporating a Redox Mediator in Li–O2/CO2 batteries. ECS Meeting Abstracts, 2019, , .	0.0	0
45	(Invited) Understanding Interfacial Reaction of LiCoO2 Positive Electrode in Aqueous Lithium-Ion Batteries. ECS Meeting Abstracts, 2019, , .	0.0	0
46	Unveiling the Underlying Mechanism of CO2-Assisted Li–O2 Batteries in the Presence of a Br3 –/Br2 Redox Couple. ECS Meeting Abstracts, 2020, MA2020-01, 442-442.	0.0	0
47	Promoting Lithium Electrodeposition Towards the Bottom of 3-D Copper Meshes in Lithium-Based Batteries. ECS Meeting Abstracts, 2020, MA2020-02, 231-231.	0.0	0