Jose Valdemar Fernandes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8948822/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comparison between Berkovich, Vickers and conical indentation tests: A three-dimensional numerical simulation study. International Journal of Solids and Structures, 2009, 46, 1095-1104.	2.7	182
2	Material parameters identification: Gradient-based, genetic and hybrid optimization algorithms. Computational Materials Science, 2008, 44, 339-346.	3.0	172
3	Ultra-microhardness testing procedure with Vickers indenter. Surface and Coatings Technology, 2002, 149, 27-35.	4.8	141
4	Three-dimensional numerical simulation of Vickers indentation tests. International Journal of Solids and Structures, 2006, 43, 784-806.	2.7	107
5	A new approach for reverse analyses in depth-sensing indentation using numerical simulation. Acta Materialia, 2007, 55, 69-81.	7.9	99
6	Effects of ion bombardment on properties of d.c. sputtered superhard (Ti, Si, Al)N nanocomposite coatings. Surface and Coatings Technology, 2002, 151-152, 515-520.	4.8	81
7	On the determination of the Young's modulus of thin films using indentation tests. International Journal of Solids and Structures, 2007, 44, 8313-8334.	2.7	76
8	Plastic behaviour of copper sheets during sequential tension tests. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1991, 147, 143-154.	5.6	75
9	Dislocation microstructures in steel during deep drawing. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1983, 48, 841-870.	0.6	71
10	Numerical study of the plastic behaviour in tension of welds in high strength steels. International Journal of Plasticity, 2004, 20, 1-18.	8.8	71
11	Effect of grain size on substructural evolution and plastic behaviour of copper. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1989, 118, 97-105.	5.6	65
12	Influence of ductile interlayers on mechanical behaviour of hard coatings under depth-sensing indentation: a numerical study on TiAlN. Journal of Materials Science, 2010, 45, 3812-3823.	3.7	47
13	Mechanical characterization of single-walled carbon nanotubes: Numerical simulation study. Composites Part B: Engineering, 2015, 75, 73-85.	12.0	47
14	Neutron-irradiated reactor pressure vessel steels investigated by positron annihilation. Journal of Nuclear Materials, 1989, 161, 1-12.	2.7	35
15	A new strategy for the simultaneous identification of constitutive laws parameters of metal sheets using a single test. Computational Materials Science, 2014, 85, 102-120.	3.0	32
16	Estimation of Young's Modulus and of Hardness by Ultra-Low Load Hardness Tests with a Vickers Indenter. Journal of Testing and Evaluation, 1994, 22, 365-369.	0.7	30
17	Influence of Vickers tip imperfection on depth sensing indentation tests. International Journal of Solids and Structures, 2007, 44, 2732-2747.	2.7	29
18	Strain path change effect on dislocation microstructure of multicrystalline copper sheets. Materials Chemistry and Physics, 2006, 98, 44-50.	4.0	28

Jose Valdemar Fernandes

#	Article	IF	CITATIONS
19	Development and persistence of microbands in copper deformed under complex strain paths. Scripta Metallurgica Et Materialia, 1993, 28, 1335-1340.	1.0	27
20	Inverse Strategies for Identifying the Parameters of Constitutive Laws of Metal Sheets. Advances in Materials Science and Engineering, 2016, 2016, 1-18.	1.8	27
21	Single and ensemble classifiers for defect prediction in sheet metal forming under variability. Neural Computing and Applications, 2020, 32, 12335-12349.	5.6	27
22	Numerical simulation study of the elastic properties of single-walled carbon nanotubes containing vacancy defects. Composites Part B: Engineering, 2016, 89, 155-168.	12.0	26
23	Evolution of the microstructure, residual stresses, and mechanical properties of W–Si–N coatings after thermal annealing. Journal of Materials Research, 2005, 20, 1356-1368.	2.6	25
24	On the determination of the work hardening curve using the bulge test. International Journal of Mechanical Sciences, 2016, 105, 158-181.	6.7	25
25	EBSD Analysis of Metal Matrix Nanocomposite Microstructure Produced by Powder Metallurgy. Nanomaterials, 2019, 9, 878.	4.1	22
26	A model for coated surface hardness. Surface and Coatings Technology, 2000, 131, 457-461.	4.8	21
27	Composites from WC powders sputter-deposited with iron rich binders. Ceramics International, 2009, 35, 1617-1623.	4.8	21
28	The effect of strain path change on the mechanical behaviour of copper sheets. Journal of Materials Processing Technology, 1990, 24, 313-322.	6.3	19
29	A Simple Method for Estimation of Residual Stresses by Depthâ€5ensing Indentation. Strain, 2012, 48, 75-87.	2.4	19
30	Structure and properties of sputtered TiAl–M (M=Ag, Cr) thin films. Surface and Coatings Technology, 1999, 120-121, 297-302.	4.8	18
31	Influence of Substrate Hardness on the Response of W–C–Co-coated Samples to Depth-sensing Indentation. Journal of Materials Research, 2000, 15, 1766-1772.	2.6	18
32	Mechanical behaviour and the evolution of the dislocation structure of copper polycrystal deformed under fatigue–tension and tension–fatigue sequential strain paths. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 348, 133-144.	5.6	18
33	Shear modulus and Poisson's ratio of singleâ€walled carbon nanotubes: Numerical evaluation. Physica Status Solidi (B): Basic Research, 2016, 253, 366-376.	1.5	18
34	Identification of material parameters for thin sheets from single biaxial tensile test using a sequential inverse identification strategy. International Journal of Material Forming, 2016, 9, 547-571.	2.0	17
35	Further development of the hybrid model for polycrystal deformation. Acta Materialia, 2000, 48, 1919-1930.	7.9	16
36	Numerical simulation of tensile tests of prestrained sheets. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1999, 264, 130-138.	5.6	15

#	Article	IF	CITATIONS
37	On the determination of the film hardness in hard film/substrate composites using depth-sensing indentation. Ceramics International, 2013, 39, 6251-6263.	4.8	15
38	Anisotropy and plastic flow in the circular bulge test. International Journal of Mechanical Sciences, 2017, 128-129, 70-93.	6.7	15
39	Mechanical characterisation of γ-TiAl thin films obtained by two different sputtering routes. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2002, 329-331, 147-152.	5.6	14
40	Strain path and work-hardening behavior of brass. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 507, 13-21.	5.6	14
41	Numerical study on the effect of mechanical properties variability in sheet metal forming processes. International Journal of Advanced Manufacturing Technology, 2018, 96, 561-580.	3.0	14
42	The coated surface hardness: a kinematic model. Thin Solid Films, 1998, 335, 153-159.	1.8	13
43	On the equivalence between sets of parameters of the yield criterion and the isotropic and kinematic hardening laws. International Journal of Material Forming, 2015, 8, 505-515.	2.0	13
44	Inverse identification of the Swift law parameters using the bulge test. International Journal of Material Forming, 2017, 10, 493-513.	2.0	13
45	Plastic behaviour of copper sheets subjected to a double strain-path change. Journal of Materials Processing Technology, 1995, 47, 261-272.	6.3	12
46	Yield stress after double strain-path change. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2000, 284, 64-69.	5.6	12
47	Inverse identification of the work hardening law from circular and elliptical bulge tests. Journal of Materials Processing Technology, 2020, 279, 116573.	6.3	12
48	Performance Comparison of Parametric and Non-Parametric Regression Models for Uncertainty Analysis of Sheet Metal Forming Processes. Metals, 2020, 10, 457.	2.3	12
49	Characterization of Ni–CNTs Nanocomposites Produced by Ball-Milling. Metals, 2020, 10, 2.	2.3	12
50	Developments in the evaluation of elastic properties of carbon nanotubes and their heterojunctions by numerical simulation. AIMS Materials Science, 2017, 4, 706-737.	1.4	12
51	On the Determination of Elastic Properties of Single-Walled Boron Nitride Nanotubes by Numerical Simulation. Materials, 2021, 14, 3183.	2.9	11
52	Use of ultramicroindentation to evaluate the degradation of sputtered coatings. Vacuum, 1999, 52, 157-162.	3.5	10
53	Non-uniform deformation after prestrain. European Journal of Mechanics, A/Solids, 2000, 19, 209-221.	3.7	10
54	Normal stress components during shear tests of metal sheets. International Journal of Mechanical Sciences, 2019, 164, 105169.	6.7	10

#	Article	IF	CITATIONS
55	Investigation on the Strengthening Mechanisms of Nickel Matrix Nanocomposites. Nanomaterials, 2021, 11, 1426.	4.1	10
56	The influence of silver on the structure and mechanical properties of (TiAl)-based intermetallics. Thin Solid Films, 1999, 343-344, 43-46.	1.8	9
57	On the identification of kinematic hardening with reverse shear test. Engineering With Computers, 2015, 31, 681-690.	6.1	9
58	Modelling and Simulation of Sheet Metal Forming Processes. Metals, 2019, 9, 1356.	2.3	9
59	New Mandrel Design for Ring Hoop Tensile Testing. Experimental Techniques, 2021, 45, 769-787.	1.5	9
60	Mechanical Characterization of Multiwalled Carbon Nanotubes: Numerical Simulation Study. Materials, 2020, 13, 4283.	2.9	9
61	Strengthening Mechanisms of Aluminum Matrix Nanocomposites Reinforced with CNTs Produced by Powder Metallurgy. Metals, 2021, 11, 1711.	2.3	8
62	Nanostructured Mo3Al-based composites strengthened by Al2O3 precipitates. Journal of Alloys and Compounds, 2010, 502, 480-487.	5.5	7
63	Numerical Simulation of the Depth-Sensing Indentation Test with Knoop Indenter. Metals, 2018, 8, 885.	2.3	7
64	Complex strain paths in polycrystalline copper: microstructural aspects. Materials Research, 1999, 2, 185-189.	1.3	6
65	Reverse analysis in depth-sensing indentation for evaluation of the Young's modulus of thin films. Philosophical Magazine, 2008, 88, 313-325.	1.6	6
66	Young's modulus of thin films using depth-sensing indentation. Philosophical Magazine Letters, 2010, 90, 9-22.	1.2	6
67	On the characterization of the plastic anisotropy in orthotropic sheet metals with a cruciform biaxial test. IOP Conference Series: Materials Science and Engineering, 2010, 10, 012142.	0.6	6
68	Characterisation of Modified Sputtered (TiAl)-Based Intermetallic Materials Doped with Silver and Chromium. Key Engineering Materials, 2000, 188, 37-44.	0.4	5
69	Optimization of the Phenomenological Constitutive Models Parameters Using Genetic Algorithms. , 2007, , 35-54.		5
70	Numerical Simulation of the Mechanical Behaviour of the Multi-Walled Carbon Nanotubes. Journal of Nano Research, 0, 47, 106-119.	0.8	5
71	On the evaluation of the ductility of thin films. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2002, 337, 97-103.	5.6	4
72	Analytical sensitivity matrix for the inverse identification of hardening parameters of metal sheets. European Journal of Mechanics, A/Solids, 2019, 75, 205-215.	3.7	4

#	Article	IF	CITATIONS
73	Elastic Properties of Single-Walled Phosphide Nanotubes: Numerical Simulation Study. Nanomaterials, 2022, 12, 2360.	4.1	4
74	Numerical Study of the Influence of Imperfection of the Tip of a Vickers Indenter on Ultramicrohardness Test Results. Key Engineering Materials, 2002, 230-232, 525-528.	0.4	3
75	Numerical Simulation of Ultramicrohardness Tests in Thin Films. Materials Science Forum, 2004, 455-456, 694-698.	0.3	3
76	Mechanical properties of sintered La9.33Si2Ge4O26 oxyapatite materials for SOFC electrolytes. Ceramics International, 2012, 38, 6151-6156.	4.8	3
77	How to Combine the Parameters of the Yield Criteria and the Hardening Law. Key Engineering Materials, 0, 554-557, 1195-1202.	0.4	3
78	Comparing metamodeling techniques for variability analysis in sheet metal forming processes. AIP Conference Proceedings, 2019, , .	0.4	3
79	An approach using thin films as a predictive way to produce new bulk materials. Surface and Coatings Technology, 2000, 131, 162-166.	4.8	2
80	Dislocation Microstructure in Copper Multicrystals Deformed under the Sequences: Rolling - Tension and Tension - Rolling. Materials Science Forum, 2006, 514-516, 589-593.	0.3	2
81	Strain Path Change Effect on Deformation Behaviour of Materials with Low-to-Moderate Stacking Fault Energy. Materials Science Forum, 2008, 587-588, 420-424.	0.3	2
82	Numerical Simulation of the Mechanical Behaviour of Single-Walled Carbon Nanotube Heterojunctions. Journal of Nano Research, 2016, 38, 73-87.	0.8	2
83	Numerical Study on the Forming Behaviour of Multilayer Sheets. Metals, 2020, 10, 716.	2.3	2
84	Theoretical Prediction of the Limit Curves for Simulation of Plastic Instability. Studies in Applied Mechanics, 1987, , 161-170.	0.4	2
85	Taylor Analysis for {111}<112> Twinning on One System and {111}<110> Slip Under Tension and Compression Flow Conditions. Key Engineering Materials, 2002, 230-232, 509-512.	0.4	1
86	Microstructural Plastic Behaviour of AISI 304 Austenitic Stainless Steel. Materials Science Forum, 2004, 455-456, 280-284.	0.3	1
87	Influence of the Mechanical Microtwinning on the Plastic Behaviour of the AISI 304 Stainless Steel. Materials Science Forum, 2004, 455-456, 711-716.	0.3	1
88	A Numerical Study on the Mechanical Behaviour of Hard Coatings with Ductile Interlayers under Depth-Sensing Indentation. Materials Science Forum, 2010, 636-637, 1194-1198.	0.3	1
89	Inverse analysis methodology on metal sheets for constitutive parameters identification. International Journal of Materials Engineering Innovation, 2013, 4, 101.	0.5	1
90	Mechanical Characterisation of Single-Walled Carbon Nanotube Heterojunctions: Numerical Simulation Study. Materials, 2020, 13, 5100.	2.9	1

#	Article	IF	CITATIONS
91	Assessment of scatter on material properties and its influence on formability in hole expansion. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2021, 235, 1262-1270.	1.1	1
92	Positron studies in polycrystalline deformed copper. Crystal Research and Technology, 1987, 22, K185-K190.	1.3	0
93	Influence of Plastic Deformation of the Heat Affected Zone on the Mechanical Behaviour of Welds in High Strength Steels. Key Engineering Materials, 2003, 233-236, 791-796.	0.4	0
94	Cyclic Deformation Behaviour of Copper Polycrystals Pre-Strained in Tension. Materials Science Forum, 2004, 455-456, 330-334.	0.3	0
95	Plastic Behaviour of Copper Polycrystal Subjected to Fatigue-Tension Sequential Loading Tests. Materials Science Forum, 2006, 514-516, 897-900.	0.3	0
96	Strain and Stress Distribution in Vickers Indentation of Coated Materials. Materials Science Forum, 2006, 514-516, 1472-1476.	0.3	0
97	Mechanical Properties Evaluation of Bulk and Coated Material by Depth Sensing Indentation. , 0, , .		0
98	Numerical Study of Mechanical Behaviour of Heterogeneous Materials. Materials Science Forum, 2012, 730-732, 549-554.	0.3	0
99	Mechanical characterization of thin films by depth-sensing indentation. , 2015, , 407-425.		0
100	The Effect of Vacancy Defects on the Evaluation of the Mechanical Properties of Single-Wall Carbon Nanotubes: Numerical Simulation Study. Advanced Structured Materials, 2015, , 323-339.	0.5	0