Run Lin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8948817/publications.pdf

Version: 2024-02-01

677142 687363 1,053 24 13 22 citations h-index g-index papers 27 27 27 2016 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Sharp recanalization for treatment of central venous occlusive disease in hemodialysis patients. Journal of Vascular Surgery: Venous and Lymphatic Disorders, 2022, 10, 306-312.	1.6	14
2	Computational fluid dynamics simulation of hemodynamic changes in a hemodialysis patient with central venous stenosis treated with stent. Seminars in Dialysis, 2022, 35, 528-533.	1.3	3
3	Sharp recanalization using Chiba biopsy needle for the treatment of biliary occlusion after radiofrequency ablation. Gastroenterology Report, 2022, 10, goab058.	1.3	1
4	One-year outcomes and predictive factors for primary patency after stent placement for treatment of central venous occlusive disease in hemodialysis patients. Therapeutic Advances in Chronic Disease, 2022, 13, 204062232110630.	2.5	5
5	Mediastinal Hepatoid Adenocarcinoma Treated With Arterial Interventional Therapy: A Case Report and Review of Literature. Frontiers in Oncology, 2022, 12, 785888.	2.8	O
6	PSMA-targeted arsenic nanosheets: a platform for prostate cancer therapy <i>via</i> ferroptosis and ATM deficiency-triggered chemosensitization. Materials Horizons, 2021, 8, 2216-2229.	12.2	12
7	Microneedle-array patch with pH-sensitive formulation for glucose-responsive insulin delivery. Nano Research, 2021, 14, 2689-2696.	10.4	35
8	Segmentation and Registration of the Liver in Dynamic Contrast-Enhanced Computed Tomography Images. Journal of Medical Imaging and Health Informatics, 2021, 11, 773-780.	0.3	0
9	Prognostic value of splenic volume in hepatocellular carcinoma patients receiving transarterial chemoembolization. Journal of Gastrointestinal Oncology, 2021, 12, 1141-1151.	1.4	2
10	Automatic Production and Preliminary PET Imaging of a New Imaging Agent [18F]AlF-FAPT. Frontiers in Oncology, 2021, 11, 802676.	2.8	5
11	A versatile UCST-type composite microsphere for image-guided chemoembolization and photothermal therapy against liver cancer. Nanoscale, 2020, 12, 20002-20015.	5.6	17
12	Anti-EGFR therapy in metastatic colorectal cancer: mechanisms and potential regimens of drug resistance. Gastroenterology Report, 2020, 8, 179-191.	1.3	60
13	Fatty Acid Oxidation Controls CD8+ Tissue-Resident Memory T-cell Survival in Gastric Adenocarcinoma. Cancer Immunology Research, 2020, 8, 479-492.	3.4	116
14	Strategies to improve tumor penetration of nanomedicines through nanoparticle design. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2019, 11, e1519.	6.1	180
15	A polyethylenimine-based diazeniumdiolate nitric oxide donor accelerates wound healing. Biomaterials Science, 2019, 7, 1607-1616.	5.4	36
16	Bevacizumab and near infrared probe conjugated iron oxide nanoparticles for vascular endothelial growth factor targeted MR and optical imaging. Biomaterials Science, 2018, 6, 1517-1525.	5.4	32
17	The earlier, the better: the effects of different administration timepoints of sorafenib in suppressing the carcinogenesis of VEGF in rats. Cancer Chemotherapy and Pharmacology, 2018, 81, 207-216.	2.3	4
18	Impact of anti-biofouling surface coatings on the properties of nanomaterials and their biomedical applications. Journal of Materials Chemistry B, 2018, 6, 9-24.	5.8	50

#	Article	IF	CITATION
19	CD155T/TIGIT Signaling Regulates CD8+ T-cell Metabolism and Promotes Tumor Progression in Human Gastric Cancer. Cancer Research, 2017, 77, 6375-6388.	0.9	218
20	Phosphorylcholine oligomer-grafted graphene oxide for tumor-targeting doxorubicin delivery. RSC Advances, 2017, 7, 41675-41685.	3.6	8
21	Improving sensitivity and specificity of capturing and detecting targeted cancer cells with anti-biofouling polymer coated magnetic iron oxide nanoparticles. Colloids and Surfaces B: Biointerfaces, 2017, 150, 261-270.	5.0	37
22	PEG-b-AGE polymer coated magnetic nanoparticle probes with facile functionalization and anti-fouling properties for reducing non-specific uptake and improving biomarker targeting. Journal of Materials Chemistry B, 2015, 3, 3591-3603.	5.8	45
23	Ultrashort Echo Time (UTE) imaging of receptor targeted magnetic iron oxide nanoparticles in mouse tumor models. Journal of Magnetic Resonance Imaging, 2014, 40, 1071-1081.	3.4	29
24	Casein-Coated Iron Oxide Nanoparticles for High MRI Contrast Enhancement and Efficient Cell Targeting. ACS Applied Materials & Date: 1.00 1.	8.0	142