Alino Martinez-Marcos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8948194/publications.pdf

Version: 2024-02-01

87 papers

3,294 citations

172457 29 h-index 53 g-index

87 all docs 87 docs citations

87 times ranked

2777 citing authors

#	Article	IF	CITATIONS
1	Neurodegeneration and astrogliosis in the entorhinal cortex in Alzheimer's disease: Stereological layerâ€specific assessment and proteomic analysis. Alzheimer's and Dementia, 2022, 18, 2468-2480.	0.8	21
2	Neurodegeneration and Astrogliosis in the Human CA1 Hippocampal Subfield Are Related to hsp90ab1 and bag3 in Alzheimer's Disease. International Journal of Molecular Sciences, 2022, 23, 165.	4.1	22
3	Astrogliosis and sexually dimorphic neurodegeneration and microgliosis in the olfactory bulb in Parkinson's disease. Npj Parkinson's Disease, 2021, 7, 11.	5. 3	23
4	What emotions do physical therapy students feel during their first visit to the dissection room?. Annals of Anatomy, 2021, 239, 151777.	1.9	5
5	The Human Hippocampus in Parkinson's Disease: An Integrative Stereological and Proteomic Study. Journal of Parkinson's Disease, 2021, 11, 1345-1365.	2.8	27
6	Somatostatin and Astroglial Involvement in the Human Limbic System in Alzheimer's Disease. International Journal of Molecular Sciences, 2021, 22, 8434.	4.1	7
7	Anxiety among nursing students during their first human prosection. Nurse Education Today, 2020, 85, 104269.	3.3	16
8	The human olfactory system in two proteinopathies: Alzheimer's and Parkinson's diseases. Translational Neurodegeneration, 2020, 9, 22.	8.0	62
9	Somatostatin, Olfaction, and Neurodegeneration. Frontiers in Neuroscience, 2020, 14, 96.	2.8	22
10	Anxiety levels among health sciences students during their first visit to the dissection room. BMC Medical Education, 2020, 20, 109.	2.4	13
11	Cranial Pair 0: The Nervus Terminalis. Anatomical Record, 2019, 302, 394-404.	1.4	18
12	Human amyloid-β enriched extracts: evaluation of in vitro and in vivo internalization and molecular characterization. Alzheimer's Research and Therapy, 2019, 11, 56.	6.2	16
13	Neurodegeneration and contralateral α-synuclein induction after intracerebral α-synuclein injections in the anterior olfactory nucleus of a Parkinson's disease A53T mouse model. Acta Neuropathologica Communications, 2019, 7, 56.	5.2	13
14	Cranial nerves: Phylogeny and ontogeny. Anatomical Record, 2019, 302, 378-380.	1.4	6
15	Cranial Nerves: Morphology and Clinical Relevance. Anatomical Record, 2019, 302, 555-557.	1.4	5
16	Anxiety among Medical Students when Faced with the Practice of Anatomical Dissection. Anatomical Sciences Education, 2019, 12, 300-309.	3.7	28
17	Learning from human cadaveric prosections: Examining anxiety in speech therapy students. Anatomical Sciences Education, 2017, 10, 487-494.	3.7	21
18	α-Synucleinopathy in the Human Amygdala in Parkinson Disease: Differential Vulnerability of Somatostatin- and Parvalbumin-Expressing Neurons. Journal of Neuropathology and Experimental Neurology, 2017, 76, 754-758.	1.7	13

#	Article	IF	Citations
19	Differential Effects of Parkinsonâ∈™s Disease on Interneuron Subtypes within the Human Anterior Olfactory Nucleus. Frontiers in Neuroanatomy, 2017, 11, 113.	1.7	19
20	Neurogenesis, Neurodegeneration, Interneuron Vulnerability, and Amyloid- \hat{l}^2 in the Olfactory Bulb of APP/PS1 Mouse Model of Alzheimer's Disease. Frontiers in Neuroscience, 2016, 10, 227.	2.8	20
21	Editorial: 50th Anniversary of Adult Neurogenesis: Olfaction, Hippocampus, and Beyond. Frontiers in Neuroscience, 2016, 10, 319.	2.8	3
22	Hippocampal α-synuclein and interneurons in Parkinson's disease: Data from human and mouse models. Movement Disorders, 2016, 31, 979-988.	3.9	26
23	Interneurons in the human olfactory system in Alzheimer's disease. Experimental Neurology, 2016, 276, 13-21.	4.1	36
24	Olfactory and cortical projections to bulbar and hippocampal adult-born neurons. Frontiers in Neuroanatomy, 2015, 9, 4.	1.7	17
25	Prefrontal cortex afferents to the anterior temporal lobe in the <i>Macaca fascicularis</i> Journal of Comparative Neurology, 2015, 523, 2570-2598.	1.6	11
26	αâ€ S ynuclein staging in the amygdala of a <scp>P</scp> arkinson's disease model: cell types involved. European Journal of Neuroscience, 2015, 41, 137-146.	2.6	9
27	Interneurons, tau and amyloid- \hat{l}^2 in the piriform cortex in Alzheimerâ \in ^M s disease. Brain Structure and Function, 2015, 220, 2011-2025.	2.3	64
28	α-Synuclein in the olfactory system in Parkinson's disease: role of neural connections on spreading pathology. Brain Structure and Function, 2014, 219, 1513-26.	2.3	52
29	Ultrasound-guided sciatic nerve pulsed radiofrequency for chronic knee pain treatment: a novel approach. Journal of Anesthesia, 2013, 27, 935-938.	1.7	23
30	Interneurons and Betaâ€Amyloid in the Olfactory Bulb, Anterior Olfactory Nucleus and Olfactory Tubercle in APPxPS1 Transgenic Mice Model of Alzheimer's Disease. Anatomical Record, 2013, 296, 1413-1423.	1.4	30
31	Differential Expression of Interneuron Populations and Correlation with Amyloid- \hat{l}^2 Deposition in the Olfactory Cortex of an A \hat{l}^2 PP/PS1 Transgenic Mouse Model of Alzheimer's Disease. Journal of Alzheimer's Disease, 2012, 31, 113-129.	2.6	35
32	Centrifugal telencephalic afferent connections to the main and accessory olfactory bulbs. Frontiers in Neuroanatomy, 2012, 6, 19.	1.7	39
33	α-Synuclein in the olfactory system of a mouse model of Parkinson's disease: correlation with olfactory projections. Brain Structure and Function, 2012, 217, 447-458.	2.3	29
34	Cladistic Analysis of Olfactory and Vomeronasal Systems. Frontiers in Neuroanatomy, 2011, 5, 3.	1.7	35
35	Maturation of newly born vomeronasal neurons in the adult mice. NeuroReport, 2011, 22, 28-32.	1.2	2
36	α-Synucleinopathy in the human olfactory system in Parkinson's disease: involvement of calcium-binding protein- and substance P-positive cells. Acta Neuropathologica, 2010, 119, 723-735.	7.7	87

#	Article	IF	Citations
37	Neurogenesis in subclasses of vomeronasal sensory neurons in adult mice. Developmental Neurobiology, 2010, 70, 961-970.	3.0	27
38	Staging of αâ€synuclein in the olfactory bulb in a model of Parkinson's disease: Cell types involved. Movement Disorders, 2010, 25, 1701-1707.	3.9	24
39	Chemosensory Function of the Amygdala. Vitamins and Hormones, 2010, 83, 165-196.	1.7	37
40	Somatostatin, tau, and \hat{I}^2 -amyloid within the anterior olfactory nucleus in Alzheimer disease. Experimental Neurology, 2010, 223, 347-350.	4.1	55
41	Subicular and CA1 hippocampal projections to the accessory olfactory bulb. Hippocampus, 2009, 19, 124-129.	1.9	28
42	Fate of marginal neuroblasts in the vomeronasal epithelium of adult mice. Journal of Comparative Neurology, 2009, 517, 723-736.	1.6	19
43	On the organization of olfactory and vomeronasal cortices. Progress in Neurobiology, 2009, 87, 21-30.	5.7	110
44	2074v Alpha1-Beta1 and Alpha6-Beta1-Integrin. , 2008, , 1-1.		0
45	Convergence of unimodal and polymodal sensory input to the entorhinal cortex in the fascicularis monkey. Neuroscience, 2008, 151, 255-271.	2.3	33
46	Vomeronasal inputs to the rodent ventral striatum. Brain Research Bulletin, 2008, 75, 467-473.	3.0	38
47	Projections of olfactory bulbs to the olfactory and vomeronasal cortices. NeuroReport, 2008, 19, 1541-1544.	1.2	8
48	V1R and V2R segregated vomeronasal pathways to the hypothalamus. NeuroReport, 2008, 19, 1623-1626.	1.2	23
49	Convergence of olfactory and vomeronasal projections in the rat basal telencephalon. Journal of Comparative Neurology, 2007, 504, 346-362.	1.6	147
50	Segregated pathways to the vomeronasal amygdala: differential projections from the anterior and posterior divisions of the accessory olfactory bulb. European Journal of Neuroscience, 2007, 25, 2065-2080.	2.6	106
51	Topographical and laminar distribution of cortical input to the monkey entorhinal cortex. Journal of Anatomy, 2007, 211, 250-260.	1.5	72
52	Projections from the posterolateral olfactory amygdala to the ventral striatum: neural basis for reinforcing properties of chemical stimuli. BMC Neuroscience, 2007, 8, 103.	1.9	58
53	Efferent connections of the main olfactory bulb in the opossum (Monodelphis domestica): A characterization of the olfactory entorhinal cortex in a marsupial. Neuroscience Letters, 2006, 395, 51-56.	2.1	19
54	Substantia nigra compacta neurons that innervate the reticular thalamic nucleus in the rat also project to striatum or globus pallidus: Implications for abnormal motor behavior. Neuroscience, 2006, 143, 477-486.	2.3	50

#	Article	IF	CITATIONS
55	Reciprocal connections between olfactory structures and the cortex of the rostral superior temporal sulcus in theMacaca fascicularismonkey. European Journal of Neuroscience, 2005, 22, 2503-2518.	2.6	21
56	Neurogenesis, migration, and apoptosis in the vomeronasal epithelium of adult mice. Journal of Neurobiology, 2005, 63, 173-187.	3.6	33
57	Gross anatomy dissections and self-directed learning in medicine. Clinical Anatomy, 2005, 18, 385-391.	2.7	29
58	Chemoarchitecture and afferent connections of the "olfactostriatum― a specialized vomeronasal structure within the basal ganglia of snakes. Journal of Chemical Neuroanatomy, 2005, 29, 49-69.	2.1	12
59	Efferent connections of the "olfactostriatum†A specialized vomeronasal structure within the basal ganglia of snakes. Journal of Chemical Neuroanatomy, 2005, 29, 217-226.	2.1	14
60	The "olfactostriatum―of snakes: A basal ganglia vomeronasal structure in tetrapods. Brain Research Bulletin, 2005, 66, 337-340.	3.0	5
61	The Parahippocampal Gyrus in the Baboon: Anatomical, Cytoarchitectonic and Magnetic Resonance Imaging (MRI) Studies. Cerebral Cortex, 2004, 14, 231-246.	2.9	22
62	Quantitative estimation of the primary auditory cortex in human brains. Brain Research, 2004, 1008, 20-28.	2.2	12
63	Postnatal development of calcium-binding proteins immunoreactivity (parvalbumin, calbindin,) Tj ETQq $1\ 1\ 0.78$	4314 rgBT 2.1	/Oyerlock 10
64	Structure and function of the vomeronasal system: an update. Progress in Neurobiology, 2003, 70, 245-318.	5.7	587
65	Retinal ganglion cells projecting to the optic tectum and visual thalamus of lizards. Visual Neuroscience, 2002, 19, 575-581.	1.0	6
66	The pallial amygdala of amniote vertebrates: evolution of the concept, evolution of the structure. Brain Research Bulletin, 2002, 57, 463-469.	3.0	121
67	Comparative aspects of the olfactory portion of the entorhinal cortex and its projection to the hippocampus in rodents, nonhuman primates, and the human brain. Brain Research Bulletin, 2002, 57, 557-560.	3.0	78
68	Neural substrates for processing chemosensory information in snakes. Brain Research Bulletin, 2002, 57, 543-546.	3.0	21
69	Immunohistochemical identification of components of the chemoattractant signal transduction pathway in vomeronasal bipolar neurons of garter snakes. Brain Research, 2002, 952, 146-151.	2.2	4
70	Neural substrates for tongue-flicking behavior in snakes. Journal of Comparative Neurology, 2001, 432, 75-87.	1.6	23
71	Cell migration to the anterior and posterior divisions of the granule cell layer of the accessory olfactory bulb of adult opossums. Developmental Brain Research, 2001, 127, 95-98.	1.7	12
72	Neurogenesis in the vomeronasal epithelium of adult rats: Evidence for different mechanisms for growth and neuronal turnover. Journal of Neurobiology, 2000, 44, 423-435.	3.6	36

#	Article	IF	CITATIONS
73	Cell turnover in the vomeronasal epithelium: Evidence for differential migration and maturation of subclasses of vomeronasal neurons in the adult opossum. Journal of Neurobiology, 2000, 43, 50-63.	3.6	25
74	Differential projections from the anterior and posterior divisions of the accessory olfactory bulb to the medial amygdala in the opossum, Monodelphis domestica. European Journal of Neuroscience, 1999, 11, 3789-3799.	2.6	55
75	Afferents to the red nucleus in the lizardPodarcis hispanica: Putative pathways for visuomotor integration. Journal of Comparative Neurology, 1999, 411, 35-55.	1.6	12
76	Organization of the ophidian amygdala: Chemosensory pathways to the hypothalamus., 1999, 412, 51-68.		42
77	What is the amygdala? A comparative approach. Trends in Neurosciences, 1999, 22, 207.	8.6	14
78	Differential centrifuagal afferents to the anterior and posterior accessory olfactory bulb. NeuroReport, 1999, 10, 2011-2015.	1.2	38
79	Septal complex of the telencephalon of lizards: III. Efferent connections and general discussion. Journal of Comparative Neurology, 1998, 401, 525-548.	1.6	43
80	Identification of the reptilian basolateral amygdala: an anatomical investigation of the afferents to the posterior dorsal ventricular ridge of the lizard <i>Podarcis hispanica</i> Journal of Neuroscience, 1998, 10, 3517-3534.	2.6	74
81	Ascending projections from the optic tectum in the lizard Podarcis hispanica. Visual Neuroscience, 1998, 15, 459-475.	1.0	14
82	A Lacertilian Dorsal Retinorecipient Thalamus: A Re-Investigation in the Old-World Lizard & lt;i>Podarcis hispanica (Part 1 of 2). Brain, Behavior and Evolution, 1997, 50, 313-323.	1.7	64
83	Septal complex of the telencephalon of the lizardPodarcis hispanica. II. afferent connections. Journal of Comparative Neurology, 1997, 383, 489-511.	1.6	37
84	Amygdalo-hypothalamic projections in the lizardPodarcis hispanica: A combined anterograde and retrograde tracing study. Journal of Comparative Neurology, 1997, 384, 537-555.	1.6	46
85	Catecholaminergic interplexiform cells in the retina of lizards. Vision Research, 1996, 36, 1349-1355.	1.4	6
86	Neural Basis of Hyposmia in Alzheimer's Disease. , 0, , .		2
87	Neuronal and glial characterization in the rostrocaudal axis of the human anterior olfactory nucleus: Involvement in Parkinsonâ \in^{TM} s disease. Frontiers in Neuroanatomy, 0, 16, .	1.7	2