Peter Ngene

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8948059/publications.pdf Version: 2024-02-01

DETED NOENE

#	Article	IF	CITATIONS
1	Charge-discharge-induced local strain distributions in a lithium amide-borohydride-iodide [LiBH4-LiNH2-Lil] solid electrolyte. Journal of Energy Storage, 2022, 47, 103600.	3.9	5
2	lonic conductivity in complex metal hydride-based nanocomposite materials: The impact of nanostructuring and nanocomposite formation. Journal of Alloys and Compounds, 2022, 901, 163474.	2.8	22
3	Effects of LiBF4 Addition on the Lithium-Ion Conductivity of LiBH4. Molecules, 2022, 27, 2187.	1.7	7
4	Potassium hydride-intercalated graphite as an efficient heterogeneous catalyst for ammonia synthesis. Nature Catalysis, 2022, 5, 222-230.	16.1	37
5	Metallic and complex hydride-based electrochemical storage of energy. Progress in Energy, 2022, 4, 032001.	4.6	26
6	Hydrogen storage in complex hydrides: past activities and new trends. Progress in Energy, 2022, 4, 032009.	4.6	23
7	The Nature of Interface Interactions Leading to High Ionic Conductivity in LiBH ₄ /SiO ₂ Nanocomposites. ACS Applied Energy Materials, 2022, 5, 8057-8066.	2.5	7
8	Copper sulfide derived nanoparticles supported on carbon for the electrochemical reduction of carbon dioxide. Catalysis Today, 2021, 377, 157-165.	2.2	16
9	Manganese oxide promoter effects in the copper-catalyzed hydrogenation of ethyl acetate. Journal of Catalysis, 2021, 394, 307-315.	3.1	13
10	Room-Temperature Solid-State Lithium-Ion Battery Using a LiBH ₄ –MgO Composite Electrolyte. ACS Applied Energy Materials, 2021, 4, 1228-1236.	2.5	45
11	Structure Dependent Product Selectivity for CO ₂ Electroreduction on ZnO Derived Catalysts. ChemCatChem, 2021, 13, 1998-2004.	1.8	9
12	Conductor–Insulator Interfaces in Solid Electrolytes: A Design Strategy to Enhance Li-Ion Dynamics in Nanoconfined LiBH ₄ /Al ₂ O ₃ . Journal of Physical Chemistry C, 2021, 125, 15052-15060.	1.5	14
13	Enhanced Room-Temperature Ionic Conductivity of NaCB ₁₁ H ₁₂ via High-Energy Mechanical Milling. ACS Applied Materials & Interfaces, 2021, 13, 61346-61356.	4.0	21
14	Materials for hydrogen-based energy storage – past, recent progress and future outlook. Journal of Alloys and Compounds, 2020, 827, 153548.	2.8	518
15	Li-Ion Diffusion in Nanoconfined LiBH ₄ -LiI/Al ₂ O ₃ : From 2D Bulk Transport to 3D Long-Range Interfacial Dynamics. ACS Applied Materials & Interfaces, 2020, 12, 38570-38583.	4.0	26
16	The effect of nanoscaffold porosity and surface chemistry on the Li-ion conductivity of LiBH ₄ –LiNH ₂ /metal oxide nanocomposites. Journal of Materials Chemistry A, 2020, 8, 20687-20697.	5.2	25
17	Enhancing Li-Ion Conductivity in LiBH ₄ -Based Solid Electrolytes by Adding Various Nanosized Oxides. ACS Applied Energy Materials, 2020, 3, 4941-4948.	2.5	61
18	Combined Effects of Anion Substitution and Nanoconfinement on the Ionic Conductivity of Li-Based Complex Hydrides. Journal of Physical Chemistry C, 2020, 124, 2806-2816.	1.5	32

Peter Ngene

#	Article	IF	CITATIONS
19	Copper Sulfide Derived Nanoparticles Supported on Carbon for the Electrochemical Reduction of Carbon Dioxide. ECS Meeting Abstracts, 2020, MA2020-02, 3198-3198.	0.0	0
20	Effect of Pore Confinement of NaNH ₂ and KNH ₂ on Hydrogen Generation from Ammonia. Journal of Physical Chemistry C, 2019, 123, 21487-21496.	1.5	26
21	Phase Behavior and Ion Dynamics of Nanoconfined LiBH ₄ in Silica. Journal of Physical Chemistry C, 2019, 123, 25559-25569.	1.5	29
22	Full-cell hydride-based solid-state Li batteries for energy storage. International Journal of Hydrogen Energy, 2019, 44, 7875-7887.	3.8	46
23	Reversible ammonia-based and liquid organic hydrogen carriers for high-density hydrogen storage: Recent progress. International Journal of Hydrogen Energy, 2019, 44, 7746-7767.	3.8	166
24	The influence of silica surface groups on the Li-ion conductivity of LiBH ₄ /SiO ₂ nanocomposites. Physical Chemistry Chemical Physics, 2019, 21, 22456-22466.	1.3	24
25	Complex hydrides for energy storage. International Journal of Hydrogen Energy, 2019, 44, 7860-7874.	3.8	123
26	(Invited) Light Metal Hydride Nanocomposites As Room Temperature Solid Electrolytes. ECS Meeting Abstracts, 2018, , .	0.0	0
27	Confinement Effects for Lithium Borohydride: Comparing Silica and Carbon Scaffolds. Journal of Physical Chemistry C, 2017, 121, 4197-4205.	1.5	64
28	Carbon supported lithium hydride nanoparticles: Impact of preparation conditions on particle size and hydrogen sorption. International Journal of Hydrogen Energy, 2017, 42, 5188-5198.	3.8	11
29	Metal-hydrogen systems with an exceptionally large and tunable thermodynamic destabilization. Nature Communications, 2017, 8, 1846.	5.8	47
30	Promotion of Hydrogen Desorption from Palladium Surfaces by Fluoropolymer Coating. ChemCatChem, 2016, 8, 1646-1650.	1.8	19
31	Reversible Li-insertion in nanoscaffolds: A promising strategy to alter the hydrogen sorption properties of Li-based complex hydrides. Nano Energy, 2016, 22, 169-178.	8.2	26
32	All-Solid-State Lithium-Sulfur Battery Based on a Nanoconfined LiBH ₄ Electrolyte. Journal of the Electrochemical Society, 2016, 163, A2029-A2034.	1.3	90
33	Effect of Pore Confinement of LiNH ₂ on Ammonia Decomposition Catalysis and the Storage of Hydrogen and Ammonia. Journal of Physical Chemistry C, 2016, 120, 27212-27220.	1.5	28
34	Quasi-elastic neutron scattering studies on solid electrolytes for all-solid-state lithium batteries. Acta Crystallographica Section A: Foundations and Advances, 2016, 72, s74-s75.	0.0	0
35	The hydrogen permeability of Pd–Cu based thin film membranes in relation to their structure: A combinatorial approach. International Journal of Hydrogen Energy, 2015, 40, 3932-3943.	3.8	16
36	Destabilization of Mg Hydride by Self-Organized Nanoclusters in the Immiscible Mg–Ti System. Journal of Physical Chemistry C, 2015, 119, 12157-12164.	1.5	30

Peter Ngene

#	Article	IF	CITATIONS
37	Optical hydrogen sensing with nanoparticulate Pd–Au films produced by spark ablation. Sensors and Actuators B: Chemical, 2015, 221, 290-296.	4.0	26
38	Seeing Hydrogen in Colors: Lowâ€Cost and Highly Sensitive Eye Readable Hydrogen Detectors. Advanced Functional Materials, 2014, 24, 2374-2382.	7.8	78
39	Eye readable metal hydride based hydrogen tape sensor for health applications. Proceedings of SPIE, 2014, , .	0.8	3
40	Fiber optic hydrogen sensor for a continuously monitoring of the partial hydrogen pressure in the natural gas grid. Sensors and Actuators B: Chemical, 2014, 199, 127-132.	4.0	21
41	In situ X-ray Raman spectroscopy study of the hydrogen sorption properties of lithium borohydride nanocomposites. Physical Chemistry Chemical Physics, 2014, 16, 22651-22658.	1.3	28
42	Highly sensitive and selective visual hydrogen detectors based on YxMg1â^'x thin films. Sensors and Actuators B: Chemical, 2014, 203, 745-751.	4.0	17
43	Interface effects in NaAlH4–carbon nanocomposites for hydrogen storage. International Journal of Hydrogen Energy, 2014, 39, 10175-10183.	3.8	16
44	Polymerâ€Induced Surface Modifications of Pdâ€based Thin Films Leading to Improved Kinetics in Hydrogen Sensing and Energy Storage Applications. Angewandte Chemie - International Edition, 2014, 53, 12081-12085.	7.2	53
45	Hydrogen Dynamics in Nanoconfined Lithiumborohydride. Journal of Physical Chemistry C, 2013, 117, 3789-3798.	1.5	51
46	Enhanced reversibility of H2 sorption in nanoconfined complex metal hydrides by alkali metal addition. Journal of Materials Chemistry, 2012, 22, 13209.	6.7	32
47	In situ X-ray Raman spectroscopy of LiBH4. Physical Chemistry Chemical Physics, 2012, 14, 5581.	1.3	27
48	Nanoconfined LiBH ₄ and Enhanced Mobility of Li ^{+Â} and BH ₄ [–] Studied by Solid-State NMR. Journal of Physical Chemistry C, 2012, 116, 22169-22178.	1.5	83
49	The role of Ni in increasing the reversibility of the hydrogen release from nanoconfined LiBH4. Faraday Discussions, 2011, 151, 47.	1.6	61
50	Reversibility of the hydrogen desorption from NaBH4 by confinement in nanoporous carbon. Energy and Environmental Science, 2011, 4, 4108.	15.6	109
51	LiBH ₄ /SBA-15 Nanocomposites Prepared by Melt Infiltration under Hydrogen Pressure: Synthesis and Hydrogen Sorption Properties. Journal of Physical Chemistry C, 2010, 114, 6163-6168.	1.5	143
52	Reversibility of the hydrogen desorption from LiBH4: a synergetic effect of nanoconfinement and Ni addition. Chemical Communications, 2010, 46, 8201.	2.2	127