List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8947755/publications.pdf Version: 2024-02-01

DITIMINI LIT

#	Article	IF	CITATIONS
1	Pollution characteristics, risk assessment, and source apportionment of heavy metals in road dust in Beijing, China. Science of the Total Environment, 2018, 612, 138-147.	8.0	412
2	Heavy metals in urban soils with various types of land use in Beijing, China. Journal of Hazardous Materials, 2011, 186, 2043-2050.	12.4	276
3	Source-specific ecological risk analysis and critical source identification of heavy metals in road dust in Beijing, China. Journal of Hazardous Materials, 2020, 388, 121763.	12.4	178
4	Development and test of the Export Coefficient Model in the Upper Reach of the Yangtze River. Journal of Hydrology, 2010, 383, 233-244.	5.4	155
5	Spatial variation, environmental risk and biological hazard assessment of heavy metals in surface sediments of the Yangtze River estuary. Marine Pollution Bulletin, 2015, 93, 250-258.	5.0	153
6	Assessment of effects of best management practices on agricultural non-point source pollution in Xiangxi River watershed. Agricultural Water Management, 2013, 117, 9-18.	5.6	138
7	Runoff characteristics and nutrient loss mechanism from plain farmland under simulated rainfall conditions. Science of the Total Environment, 2014, 468-469, 1069-1077.	8.0	134
8	Spatial variation, environmental assessment and source identification of heavy metals in sediments of the Yangtze River Estuary. Marine Pollution Bulletin, 2014, 87, 364-373.	5.0	124
9	Parameter uncertainty analysis of the non-point source pollution in the Daning River watershed of the Three Gorges Reservoir Region, China. Science of the Total Environment, 2008, 405, 195-205.	8.0	121
10	Identifying non-point source critical source areas based on multi-factors at a basin scale with SWAT. Journal of Hydrology, 2016, 533, 379-388.	5.4	115
11	The impact of seasonal varied human activity on characteristics and sources of heavy metals in metropolitan road dusts. Science of the Total Environment, 2018, 637-638, 844-854.	8.0	107
12	Uncertainty of SWAT model at different DEM resolutions in a large mountainous watershed. Water Research, 2014, 53, 132-144.	11.3	106
13	Source apportionment of PAHs in surface sediments using positive matrix factorization combined with GIS for the estuarine area of the Yangtze River, China. Chemosphere, 2015, 134, 263-271.	8.2	88
14	Uncertainty analysis in source apportionment of heavy metals in road dust based on positive matrix factorization model and geographic information system. Science of the Total Environment, 2019, 652, 27-39.	8.0	79
15	Spatial distribution and pollution evaluation of heavy metals in Yangtze estuary sediment. Marine Pollution Bulletin, 2016, 110, 564-571.	5.0	70
16	Application of genetic algorithm to land use optimization for non-point source pollution control based on CLUE-S and SWAT. Journal of Hydrology, 2018, 560, 86-96.	5.4	67
17	Quantifying and simulating landscape composition and pattern impacts on land surface temperature: A decadal study of the rapidly urbanizing city of Beijing, China. Science of the Total Environment, 2019, 654, 430-440.	8.0	67
18	Impact of spatial rainfall variability on hydrology and nonpoint source pollution modeling. Journal of Hydrology, 2012, 472-473, 205-215.	5.4	66

#	Article	IF	CITATIONS
19	Spatial and temporal variations in nitrogen and phosphorous nutrients in the Yangtze River Estuary. Marine Pollution Bulletin, 2012, 64, 2083-2089.	5.0	66
20	Impacts of DEM uncertainties on critical source areas identification for non-point source pollution control based on SWAT model. Journal of Hydrology, 2016, 540, 355-367.	5.4	60
21	Temporal variations of levels and sources of health risk associated with heavy metals in road dust in Beijing from May 2016 to April 2018. Chemosphere, 2021, 270, 129434.	8.2	56
22	Multiscale spatiotemporal characteristics of landscape patterns, hotspots, and influencing factors for soil erosion. Science of the Total Environment, 2021, 779, 146474.	8.0	55
23	Parameter uncertainty analysis in watershed total phosphorus modeling using the GLUE methodology. Agriculture, Ecosystems and Environment, 2011, 142, 246-255.	5.3	53
24	Temporal variation of heavy metal pollution in urban stormwater runoff. Frontiers of Environmental Science and Engineering, 2012, 6, 692-700.	6.0	44
25	Identifications and seasonal variations of sources of polycyclic aromatic hydrocarbons (PAHs) in the Yangtze River Estuary, China. Marine Pollution Bulletin, 2016, 104, 347-354.	5.0	44
26	Cost-effectiveness and cost-benefit analysis of BMPs in controlling agricultural nonpoint source pollution in China based on the SWAT model. Environmental Monitoring and Assessment, 2014, 186, 9011-9022.	2.7	43
27	Effects of dynamic land use inputs on improvement of SWAT model performance and uncertainty analysis of outputs. Journal of Hydrology, 2018, 563, 874-886.	5.4	40
28	Temporal-spatial analysis of water environmental capacity based on the couple of SWAT model and differential evolution algorithm. Journal of Hydrology, 2019, 569, 155-166.	5.4	40
29	Spatial-temporal characteristics, source-specific variation and uncertainty analysis of health risks associated with heavy metals in road dust in Beijing, China. Environmental Pollution, 2021, 278, 116866.	7.5	40
30	Environmental risk assessments and spatial variations of polycyclic aromatic hydrocarbons in surface sediments in Yangtze River Estuary, China. Marine Pollution Bulletin, 2015, 100, 507-515.	5.0	39
31	Spatial-temporal variation of heavy metals' sources in the surface sediments of the Yangtze River Estuary. Marine Pollution Bulletin, 2019, 138, 526-533.	5.0	37
32	Impacts of manure application on SWAT model outputs in the Xiangxi River watershed. Journal of Hydrology, 2017, 555, 479-488.	5.4	36
33	Land Use/Cover Dynamics in Response to Changes in Environmental and Socio-Political Forces in the Upper Reaches of Yangtze River, China. Sensors, 2008, 8, 8104-8122.	3.8	35
34	Uncertainty analysis of total phosphorus spatial–temporal variations in the Yangtze River Estuary using different interpolation methods. Marine Pollution Bulletin, 2014, 86, 68-75.	5.0	28
35	A comparison of single- and multi-gauge based calibrations for hydrological modeling of the Upper Daning River Watershed in China's Three Gorges Reservoir Region. Hydrology Research, 2012, 43, 822-832.	2.7	26
36	Study of carbon metabolic processes and their spatial distribution in the Beijing-Tianjin-Hebei urban agglomeration. Science of the Total Environment, 2018, 645, 1630-1642.	8.0	26

#	Article	IF	CITATIONS
37	Sequence-based statistical downscaling and its application to hydrologic simulations based on machine learning and big data. Journal of Hydrology, 2020, 586, 124875.	5.4	26
38	Regional aquatic ecological security assessment in Jinan, China. Aquatic Ecosystem Health and Management, 2010, 13, 319-327.	0.6	23
39	Uncertainty in positive matrix factorization solutions for PAHs in surface sediments of the Yangtze River Estuary in different seasons. Chemosphere, 2018, 191, 922-936.	8.2	22
40	Identification and apportionment of hazardous elements in the sediments in the Yangtze River estuary. Environmental Science and Pollution Research, 2015, 22, 20215-20225.	5.3	21
41	Spatio-temporal characteristics of livestock and their effects on pollution in China based on geographic information system. Environmental Science and Pollution Research, 2016, 23, 14183-14195.	5.3	20
42	Impacts of landscape change on net primary productivity by integrating remote sensing data and ecosystem model in a rapidly urbanizing region in China. Journal of Cleaner Production, 2021, 325, 129314.	9.3	19
43	Occurrence, source apportionment and source-specific risk assessment of antibiotics in a typical tributary of the Yellow River basin. Journal of Environmental Management, 2022, 305, 114382.	7.8	19
44	Bioavailability and risk assessment of arsenic in surface sediments of the Yangtze River estuary. Marine Pollution Bulletin, 2016, 113, 125-131.	5.0	18
45	Water environmental capacity calculation based on uncertainty analysis: a case study in the Baixi watershed area, China. Procedia Environmental Sciences, 2012, 13, 1728-1738.	1.4	16
46	Spatial-temporal characteristics of phosphorus in non-point source pollution with grid-based export coefficient model and geographical information system. Water Science and Technology, 2015, 71, 1709-1717.	2.5	15
47	Spatial-temporal distribution and risk assessment of mercury in different fractions in surface sediments from the Yangtze River estuary. Marine Pollution Bulletin, 2017, 124, 488-495.	5.0	14
48	Analysis of field-scale spatial correlations and variations of soil nutrients using geostatistics. Environmental Monitoring and Assessment, 2016, 188, 126.	2.7	13
49	Integrated assessment of nonpoint source pollution of a drinking water reservoir in a typical acid rain region. International Journal of Environmental Science and Technology, 2013, 10, 651-664.	3.5	11
50	Risk assessment and uncertainty analysis of PAHs in the sediments of the Yangtze River Estuary, China. Marine Pollution Bulletin, 2016, 112, 380-388.	5.0	9
51	A Declining Trend in China's Future Cropland-N ₂ O Emissions Due to Reduced Cropland Area. Environmental Science & Technology, 2021, 55, 14546-14555.	10.0	9
52	Spatial–temporal distribution and fuzzy comprehensive evaluation of total phosphorus and total nitrogen in the Yangtze River Estuary. Water Science and Technology, 2016, 73, 924-934.	2.5	8
53	Impact factor analysis, prediction, and mapping of soil corrosion of carbon steel across China based on MIV-BP artificial neural network and GIS. Journal of Soils and Sediments, 2020, 20, 3204-3216.	3.0	8
54	Application of spatial Markov chains to the analysis of the temporal–spatial evolution of soil erosion. Water Science and Technology, 2016, 74, 1051-1059.	2.5	7

#	Article	IF	CITATIONS
55	Multi-scenario simulation of ecological risk assessment based on ecosystem service values in the Beijing-Tianjin-Hebei region. Environmental Monitoring and Assessment, 2022, 194, 434.	2.7	7
56	Source-specific risk apportionment and critical risk source identification of antibiotic resistance in Fenhe River basin, China. Chemosphere, 2022, 287, 131997.	8.2	6
57	Identification and uncertainty analysis of high-risk areas of heavy metals in sediments of the Yangtze River estuary, China. Marine Pollution Bulletin, 2021, 164, 112003.	5.0	5
58	Evaluating Spatiotemporal Variations in the Impact of Inter-basin Water Transfer Projects in Water-receiving Basin. Water Resources Management, 2021, 35, 5409-5429.	3.9	5
59	An integrated simulation-monitoring framework for nitrogen assessment: A case study in the Baixi watershed, China. Procedia Environmental Sciences, 2012, 13, 1076-1090.	1.4	4
60	Effectivity and Efficiency of Best Management Practices Based on a Survey and SWAPP Model of the Xiangxi River Basin. Water (Switzerland), 2021, 13, 985.	2.7	4
61	A four-way model (FEST) for source apportionment: Development, verification, and application. Journal of Hazardous Materials, 2022, 426, 128009.	12.4	4
62	Impact of particle sizes on health risks and source-specific health risks for heavy metals in road dust. Environmental Science and Pollution Research, 2022, 29, 75471-75486.	5.3	4
63	Integrated assessment and changes of ecological environment in the Daning River Watershed. Frontiers of Biology in China: Selected Publications From Chinese Universities, 2007, 2, 474-478.	0.2	3
64	Uncertainty in flow and water quality measurement data: A case study in the Daning River watershed in the Three Gorges Reservoir region, China. Desalination and Water Treatment, 2013, 51, 3995-4001.	1.0	3
65	Source variation and tempo-spatial characteristics of health risks of heavy metals in surface dust in Beijing, China. Stochastic Environmental Research and Risk Assessment, 2022, 36, 2535-2547.	4.0	3
66	Significance of using dynamic land-use data and its threshold in hydrology and water quality simulation models. Environmental Monitoring and Assessment, 2022, 194, 108.	2.7	2
67	Temporal-spatial variation and the influence factors of precipitation in Sichuan Province, China. Frontiers of Biology in China: Selected Publications From Chinese Universities, 2008, 3, 236-240.	0.2	1
68	Study of uncertainty of satellite and reanalysis precipitation products and their impact on hydrological simulation. Environmental Science and Pollution Research, 2021, 28, 60935-60953.	5.3	1