
## David A Harrich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8947560/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | The unique features of SARSâ€CoVâ€2 transmission: Comparison with SARSâ€CoV, MERSâ€CoV and 2009 H1N1 pandemic influenza virus. Reviews in Medical Virology, 2021, 31, e2171.                            | 8.3 | 64        |
| 2  | Dengue virus-free defective interfering particles have potent and broad anti-dengue virus activity.<br>Communications Biology, 2021, 4, 557.                                                            | 4.4 | 9         |
| 3  | Assessing the Binding of Venoms from Aquatic Elapids to the Nicotinic Acetylcholine Receptor<br>Orthosteric Site of Different Prey Models. International Journal of Molecular Sciences, 2020, 21, 7377. | 4.1 | 12        |
| 4  | Evolutionary Interpretations of Nicotinic Acetylcholine Receptor Targeting Venom Effects by a Clade of Asian Viperidae Snakes. Neurotoxicity Research, 2020, 38, 312-318.                               | 2.7 | 19        |
| 5  | Tat-Based Therapies as an Adjuvant for an HIV-1 Functional Cure. Viruses, 2020, 12, 415.                                                                                                                | 3.3 | 18        |
| 6  | An Appetite for Destruction: Detecting Prey-Selective Binding of α-Neurotoxins in the Venom of Afro-Asian Elapids. Toxins, 2020, 12, 205.                                                               | 3.4 | 32        |
| 7  | A Taxon-Specific and High-Throughput Method for Measuring Ligand Binding to Nicotinic<br>Acetylcholine Receptors. Toxins, 2019, 11, 600.                                                                | 3.4 | 29        |
| 8  | Oxazole-Benzenesulfonamide Derivatives Inhibit HIV-1 Reverse Transcriptase Interaction with Cellular eEF1A and Reduce Viral Replication. Journal of Virology, 2019, 93, .                               | 3.4 | 8         |
| 9  | eEF1A demonstrates paralog specific effects on HIV-1 reverse transcription efficiency. Virology, 2019, 530, 65-74.                                                                                      | 2.4 | 8         |
| 10 | Strong <i>In Vivo</i> Inhibition of HIV-1 Replication by Nullbasic, a Tat Mutant. MBio, 2019, 10, .                                                                                                     | 4.1 | 11        |
| 11 | HIV-1 Uncoating and Reverse Transcription Require eEF1A Binding to Surface-Exposed Acidic Residues of the Reverse Transcriptase Thumb Domain. MBio, 2018, 9, .                                          | 4.1 | 18        |
| 12 | RNA glycosidase and other agents target Tat to inhibit HIV-1 transcription. Biochemical Journal, 2018,<br>475, 1059-1062.                                                                               | 3.7 | 0         |
| 13 | Differential Effects of Strategies to Improve the Transduction Efficiency of Lentiviral Vector that<br>Conveys an Anti-HIV Protein, Nullbasic, in Human T Cells. Virologica Sinica, 2018, 33, 142-152.  | 3.0 | 5         |
| 14 | The eukaryotic translation elongation factor 1A regulation of actin stress fibers is important for infectious RSV production. Virology Journal, 2018, 15, 182.                                          | 3.4 | 10        |
| 15 | Toward the "unravelling―of HIV: Host cell factors involved in HIV-1 core uncoating. PLoS Pathogens,<br>2018, 14, e1007270.                                                                              | 4.7 | 12        |
| 16 | A mutant Tat protein inhibits infection of human cells by strains from diverse HIV-1 subtypes. Virology<br>Journal, 2017, 14, 52.                                                                       | 3.4 | 10        |
| 17 | Shutdown of HIV-1 Transcription in T Cells by Nullbasic, a Mutant Tat Protein. MBio, 2016, 7, .                                                                                                         | 4.1 | 16        |
| 18 | The protein arginine methyltransferase PRMT6 inhibits HIV-1 Tat nucleolar retention. Biochimica Et<br>Biophysica Acta - Molecular Cell Research, 2016, 1863, 254-262                                    | 4.1 | 13        |

DAVID A HARRICH

| #  | Article                                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Binding of the eukaryotic translation elongation factor 1A with the 5'UTR of HIV-1 genomic RNA is important for reverse transcription. Virology Journal, 2015, 12, 118.                                                                                              | 3.4 | 9         |
| 20 | Specific Interaction between eEF1A and HIV RT Is Critical for HIV-1 Reverse Transcription and a Potential Anti-HIV Target. PLoS Pathogens, 2015, 11, e1005289.                                                                                                       | 4.7 | 16        |
| 21 | A Mutant Tat Protein Inhibits HIV-1 Reverse Transcription by Targeting the Reverse Transcription Complex. Journal of Virology, 2015, 89, 4827-4836.                                                                                                                  | 3.4 | 16        |
| 22 | Evaluation of Polycaprolactone Matrices for Sustained Vaginal Delivery of Nevirapine in the<br>Prevention of Heterosexual HIV Transmission. Journal of Pharmaceutical Sciences, 2014, 103, 2107-2115.                                                                | 3.3 | 3         |
| 23 | A HIV-1 Tat mutant protein disrupts HIV-1 Rev function by targeting the DEAD-box RNA helicase DDX1.<br>Retrovirology, 2014, 11, 121.                                                                                                                                 | 2.0 | 28        |
| 24 | Synergistic activity of tenofovir and nevirapine combinations released from polycaprolactone<br>matrices for potential enhanced prevention of HIV infection through the vaginal route. European<br>Journal of Pharmaceutics and Biopharmaceutics, 2014, 88, 406-414. | 4.3 | 7         |
| 25 | The Eukaryotic Elongation Factor 1A Is Critical for Genome Replication of the Paramyxovirus Respiratory Syncytial Virus. PLoS ONE, 2014, 9, e114447.                                                                                                                 | 2.5 | 22        |
| 26 | Overexpression of PRMT6 does not suppress HIV-1 Tat transactivation in cells naturally lacking PRMT6.<br>Virology Journal, 2013, 10, 207.                                                                                                                            | 3.4 | 11        |
| 27 | Revisiting transdominant-negative proteins in HIV gene therapy. Future Virology, 2013, 8, 757-768.                                                                                                                                                                   | 1.8 | 3         |
| 28 | The Unexpected Roles of Eukaryotic Translation Elongation Factors in RNA Virus Replication and Pathogenesis. Microbiology and Molecular Biology Reviews, 2013, 77, 253-266.                                                                                          | 6.6 | 98        |
| 29 | An Evaluation of Polycaprolactone Matrices for Vaginal Delivery of the Antiviral, Tenofovir, in<br>Preventing Heterosexual Transmission of HIV. Journal of Pharmaceutical Sciences, 2013, 102, 3725-3735.                                                            | 3.3 | 12        |
| 30 | A Mutant Tat Protein Provides Strong Protection from HIV-1 Infection in Human CD4+T Cells. Human<br>Gene Therapy, 2013, 24, 270-282.                                                                                                                                 | 2.7 | 19        |
| 31 | Ivermectin is a specific inhibitor of importin $\hat{1}\pm/\hat{l}^2$ -mediated nuclear import able to inhibit replication of HIV-1 and dengue virus. Biochemical Journal, 2012, 443, 851-856.                                                                       | 3.7 | 559       |
| 32 | Eukaryotic elongation factor 1 complex subunits are critical HIV-1 reverse transcription cofactors.<br>Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9587-9592.                                                        | 7.1 | 49        |
| 33 | Recombinant rabbit singleâ€chain antibodies bind to the catalytic and Câ€terminal domains of HIVâ€1<br>integrase protein and strongly inhibit HIVâ€1 replication. Biotechnology and Applied Biochemistry, 2012,<br>59, 353-366.                                      | 3.1 | 11        |
| 34 | Nullbasic, a Potent Anti-HIV Tat Mutant, Induces CRM1-Dependent Disruption of HIV Rev Trafficking.<br>PLoS ONE, 2012, 7, e51466.                                                                                                                                     | 2.5 | 25        |
| 35 | HIV gene therapy that's not a SIN. HIV Therapy, 2010, 4, 395-398.                                                                                                                                                                                                    | 0.6 | 0         |
| 36 | Strand Transfer and Elongation of HIV-1 Reverse Transcription Is Facilitated by Cell Factors In Vitro.<br>PLoS ONE, 2010, 5, e13229.                                                                                                                                 | 2.5 | 20        |

DAVID A HARRICH

| #  | Article                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Potent Inhibition of HIV-1 Replication by a Tat Mutant. PLoS ONE, 2009, 4, e7769.                                                                             | 2.5 | 47        |
| 38 | Arginine Methylation Increases the Stability of Human Immunodeficiency Virus Type 1 Tat. Journal of Virology, 2009, 83, 11694-11703.                          | 3.4 | 42        |
| 39 | Reverse Transcriptase and Cellular Factors: Regulators of HIV-1 Reverse Transcription. Viruses, 2009, 1, 873-894.                                             | 3.3 | 37        |
| 40 | Maturation of the HIV reverse transcription complex: putting the jigsaw together. Reviews in Medical Virology, 2009, 19, 324-337.                             | 8.3 | 45        |
| 41 | Human Immunodeficiency Virus type-1 reverse transcriptase exists as post-translationally modified forms in virions and cells. Retrovirology, 2008, 5, 115.    | 2.0 | 9         |
| 42 | Cell Factors Stimulate Human Immunodeficiency Virus Type 1 Reverse Transcription In Vitro. Journal of<br>Virology, 2008, 82, 1425-1437.                       | 3.4 | 37        |
| 43 | HIV-1 Tat implicated as a key factor in viral spread. Future HIV Therapy, 2008, 2, 323-326.                                                                   | 0.4 | 1         |
| 44 | SOCS1: a host factor required for HIV-1 Gag trafficking. Future HIV Therapy, 2008, 2, 247-251.                                                                | 0.4 | 1         |
| 45 | The HIV-1 Tat Protein Stimulates Reverse Transcription In Vitro. Current HIV Research, 2007, 5, 474-483.                                                      | 0.5 | 26        |
| 46 | HIV-1 Replication from After Cell Entry to the Nuclear Periphery. Current HIV Research, 2007, 5, 293-299.                                                     | 0.5 | 25        |
| 47 | Functional relevance of nonsynonymous mutations in the HIV-1 tat gene within an epidemiologically-linked transmission cohort. Virology Journal, 2007, 4, 107. | 3.4 | 2         |
| 48 | Isolated HIV-1 core is active for reverse transcription. Retrovirology, 2007, 4, 77.                                                                          | 2.0 | 30        |
| 49 | Protein methylation is required to maintain optimal HIV-1 infectivity. Retrovirology, 2006, 3, 92.                                                            | 2.0 | 29        |
| 50 | HIV Type 1 Inhibition by Protein Kinase C Modulatory Compounds. AIDS Research and Human Retroviruses, 2006, 22, 854-864.                                      | 1.1 | 65        |
| 51 | Will Diverse Tat Interactions Lead to Novel Antiretroviral Drug Targets?. Current Drug Targets, 2006,<br>7, 1595-1606.                                        | 2.1 | 14        |
| 52 | SerpinB2 Is an Inducible Host Factor Involved in Enhancing HIV-1 Transcription and Replication. Journal of Biological Chemistry, 2006, 281, 31348-31358.      | 3.4 | 20        |
| 53 | SerpinB2 Is an Inducible Host Factor Involved in Enhancing HIV-1 Transcription and Replication. Journal of Biological Chemistry, 2006, 281, 31348-31358.      | 3.4 | 8         |
| 54 | Phosphorylation of HIV Tat by PKR increases interaction with TAR RNA and enhances transcription.<br>Virology Journal, 2005, 2, 17.                            | 3.4 | 54        |

## DAVID A HARRICH

| #  | Article                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | The first strand transfer reaction of HIV-1 reverse transcription is more efficient in infected cells than in cell-free natural endogenous reverse transcription reactions. Journal of Clinical Virology, 2003, 26, 229-238.                            | 3.1 | 17        |
| 56 | Inhibition of Retinoblastoma Protein Degradation by Interaction with the Serpin Plasminogen<br>Activator Inhibitor 2 via a Novel Consensus Motif. Molecular and Cellular Biology, 2003, 23, 6520-6532.                                                  | 2.3 | 64        |
| 57 | Human Immunodeficiency Virus Type 1 Protease Regulation of Tat Activity Is Essential for Efficient<br>Reverse Transcription and Replication. Journal of Virology, 2003, 77, 9912-9921.                                                                  | 3.4 | 29        |
| 58 | Kunjin Virus Replicon Vectors for Human Immunodeficiency Virus Vaccine Development. Journal of<br>Virology, 2003, 77, 7796-7803.                                                                                                                        | 3.4 | 45        |
| 59 | Kunjin Virus Replicon Vaccine Vectors Induce Protective CD8 + T-Cell Immunity. Journal of Virology, 2002, 76, 3791-3799.                                                                                                                                | 3.4 | 70        |
| 60 | Mechanistic aspects of HIV-1 reverse transcription initiation. Reviews in Medical Virology, 2002, 12, 31-45.                                                                                                                                            | 8.3 | 28        |
| 61 | Human Immunodeficiency Virus Type 1 Reverse Transcription Is Stimulated by Tat from Other<br>Lentiviruses. Virology, 2002, 300, 226-235.                                                                                                                | 2.4 | 11        |
| 62 | Inhibitors of Human Immunodeficiency Virus Type 1 Reverse Transcriptase Target Distinct Phases of<br>Early Reverse Transcription. Journal of Virology, 2001, 75, 3095-3104.                                                                             | 3.4 | 47        |
| 63 | Gag-Pol Supplied in trans Is Efficiently Packaged and Supports Viral Function in Human<br>Immunodeficiency Virus Type 1. Journal of Virology, 2001, 75, 6835-6840.                                                                                      | 3.4 | 27        |
| 64 | The Human Immunodeficiency Virus Type 1 TAR RNA Upper Stem-Loop Plays Distinct Roles in Reverse<br>Transcription and RNA Packaging. Journal of Virology, 2000, 74, 5639-5646.                                                                           | 3.4 | 54        |
| 65 | Functional Domains of Tat Required for Efficient Human Immunodeficiency Virus Type 1 Reverse<br>Transcription. Journal of Virology, 1999, 73, 2499-2508.                                                                                                | 3.4 | 38        |
| 66 | Treponema pallidum, Lipoproteins, and Synthetic Lipoprotein Analogues Induce Human<br>Immunodeficiency Virus Type 1 Gene Expression in Monocytes via NF-ÂB Activation. Journal of Infectious<br>Diseases, 1998, 177, 941-950.                           | 4.0 | 64        |
| 67 | Tat is required for efficient HIV-1 reverse transcription. EMBO Journal, 1997, 16, 1224-1235.                                                                                                                                                           | 7.8 | 141       |
| 68 | Repeated B motifs in the human immunodeficiency virus type I long terminal repeat enhancer region do<br>not exhibit cooperative factor binding Proceedings of the National Academy of Sciences of the<br>United States of America, 1988, 85, 9406-9410. | 7.1 | 40        |