Merlin Alvarado-Morales

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8947314/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Co-digestion of orange peels and marine seaweed with cattle manure to suppress inhibition from toxicants. Biomass Conversion and Biorefinery, 2022, 12, 3209-3218.	2.9	7
2	Enhanced fermentative lactic acid production from source-sorted organic household waste: Focusing on low-pH microbial adaptation and bio-augmentation strategy. Science of the Total Environment, 2022, 808, 152129.	3.9	12
3	Improving lactic acid production via bio-augmentation with acid-tolerant isolates from source-sorted organic household waste. Biomass Conversion and Biorefinery, 2022, 12, 4449-4461.	2.9	5
4	H2 competition between homoacetogenic bacteria and methanogenic archaea during biomethanation from a combined experimental-modelling approach. Journal of Environmental Chemical Engineering, 2022, 10, 107281.	3.3	18
5	Innovative co-production of polyhydroxyalkanoates and methane from broken rice. Science of the Total Environment, 2022, 825, 153931.	3.9	11
6	Bio-augmentation to improve lactic acid production from source-sorted organic household waste. Journal of Cleaner Production, 2021, 279, 123714.	4.6	21
7	Impact of storage duration and micro-aerobic conditions on lactic acid production from food waste. Bioresource Technology, 2021, 323, 124618.	4.8	16
8	Municipal biopulp as substrate for lactic acid production focusing on downstream processing. Journal of Environmental Chemical Engineering, 2021, 9, 105136.	3.3	17
9	Anaerobic co-digestion of macroalgal biomass with cattle manure under high salinity conditions. Journal of Environmental Chemical Engineering, 2021, 9, 105406.	3.3	13
10	Valorization of municipal organic waste into purified lactic acid. Bioresource Technology, 2021, 342, 125933.	4.8	19
11	Modelling bioaugmentation: Engineering intervention in anaerobic digestion. Renewable Energy, 2021, 175, 1080-1087.	4.3	10
12	Multicomponent nanoparticles as means to improve anaerobic digestion performance. Chemosphere, 2021, 283, 131277.	4.2	21
13	Upcycling the anaerobic digestion streams in a bioeconomy approach: A review. Renewable and Sustainable Energy Reviews, 2021, 151, 111635.	8.2	24
14	Techno-Economic Assessment of Biological Biogas Upgrading Based on Danish Biogas Plants. Energies, 2021, 14, 8252.	1.6	20
15	Supervisory control of an anaerobic digester subject to drastic substrate changes. Chemical Engineering Journal, 2020, 391, 123502.	6.6	11
16	Anti-algal activity of Fe2O3–TiO2 photocatalyst on Chlorella vulgaris species under visible light irradiation. Chemosphere, 2020, 242, 125119.	4.2	30
17	Up-concentration of succinic acid, lactic acid, and ethanol fermentations broths by forward osmosis. Biochemical Engineering Journal, 2020, 155, 107482.	1.8	20
18	Effect of metal oxide based TiO2 nanoparticles on anaerobic digestion process of lignocellulosic substrate. Energy, 2020, 191, 116580.	4.5	25

#	Article	IF	CITATIONS
19	Fermentative Production of Lactic Acid as a Sustainable Approach to Valorize Household Bio-Waste. Frontiers in Sustainability, 2020, 1, .	1.3	18
20	Potassium inhibition during sludge and biopulp co-digestion; experimental and model-based approaches. Waste Management, 2020, 113, 304-311.	3.7	16
21	Effect of surfactants on photocatalytic toxicity of TiO2- based nanoparticles toward Vibrio fischeri marine bacteria. Inorganic Chemistry Communication, 2020, 116, 107936.	1.8	8
22	Environmental impacts of biogas production from grass: Role of co-digestion and pretreatment at harvesting time. Applied Energy, 2019, 252, 113467.	5.1	40
23	Carbon dioxide anion radical as a tool to enhance lignin valorization. Science of the Total Environment, 2019, 682, 47-58.	3.9	14
24	Enhancing anaerobic digestion of agricultural residues by microaerobic conditions. Biomass Conversion and Biorefinery, 2019, , 1.	2.9	6
25	Valorization of organic waste with simultaneous biogas upgrading for the production of succinic acid. Biochemical Engineering Journal, 2019, 147, 136-145.	1.8	45
26	Application of nano-structured materials in anaerobic digestion: Current status and perspectives. Chemosphere, 2019, 229, 188-199.	4.2	95
27	Graphene based ZnO nanoparticles to depolymerize lignin-rich residues via UV/iodide process. Environment International, 2019, 125, 172-183.	4.8	21
28	Co-digestion of Laminaria digitata with cattle manure: A unimodel simulation study of both batch and continuous experiments. Bioresource Technology, 2019, 276, 361-368.	4.8	19
29	Miscanthus straw as substrate for biosuccinic acid production: Focusing on pretreatment and downstream processing. Bioresource Technology, 2019, 278, 82-91.	4.8	27
30	Co-digestion of municipal waste biopulp with marine macroalgae focusing on sodium inhibition. Energy Conversion and Management, 2019, 180, 931-937.	4.4	25
31	Life cycle assessment of different strategies for energy and nutrient recovery from source sorted organic fraction of household waste. Journal of Cleaner Production, 2018, 180, 360-374.	4.6	76
32	TiO ₂ –AgCl Based Nanoparticles for Photocatalytic Production of Phenolic Compounds from Lignocellulosic Residues. Energy & Fuels, 2018, 32, 6813-6822.	2.5	16
33	Amino acids production focusing on fermentation technologies – A review. Biotechnology Advances, 2018, 36, 14-25.	6.0	205
34	Process performance and modelling of anaerobic digestion using source-sorted organic household waste. Bioresource Technology, 2018, 247, 486-495.	4.8	52
35	Nickel spiking to improve the methane yield of sewage sludge. Bioresource Technology, 2018, 270, 732-737.	4.8	31
36	Integrated production of cellulosic bioethanol and succinic acid from rapeseed straw after dilute-acid pretreatment. Bioresource Technology, 2018, 265, 191-199.	4.8	69

#	Article	IF	CITATIONS
37	Photocatalytic inactivation of Vibrio fischeri using Fe2O3-TiO2-based nanoparticles. Environmental Research, 2018, 166, 497-506.	3.7	30
38	Electricity generation and microbial communities in microbial fuel cell powered by macroalgal biomass. Bioelectrochemistry, 2018, 123, 145-149.	2.4	65
39	Energy recovery from wastewater microalgae through anaerobic digestion process: Methane potential, continuous reactor operation and modelling aspects. Biochemical Engineering Journal, 2018, 139, 1-7.	1.8	34
40	Seaweed as innovative feedstock for energy and feed – Evaluating the impacts through a Life Cycle Assessment. Journal of Cleaner Production, 2017, 150, 1-15.	4.6	87
41	A systematic methodology to extend the applicability of a bioconversion model for the simulation of various co-digestion scenarios. Bioresource Technology, 2017, 235, 157-166.	4.8	27
42	In-situ biogas upgrading process: Modeling and simulations aspects. Bioresource Technology, 2017, 245, 332-341.	4.8	39
43	Macroalgae <i>Laminaria digitata</i> and <i>Saccharina latissima</i> as Potential Biomasses for Biogas and Total Phenolics Production: Focusing on Seasonal and Spatial Variations of the Algae. Energy & Fuels, 2017, 31, 7166-7175.	2.5	29
44	Laminaria digitata as potential carbon source in heterotrophic microalgae cultivation for the production of fish feed supplement. Algal Research, 2017, 26, 1-7.	2.4	14
45	TiO2/UV based photocatalytic pretreatment of wheat straw for biogas production. Anaerobe, 2017, 46, 155-161.	1.0	36
46	ANAEROBIC MODELING FOR IMPROVING SYNERGY AND ROBUSTNESS OF A MANURE CO-DIGESTION PROCESS. Brazilian Journal of Chemical Engineering, 2016, 33, 871-883.	0.7	13
47	Extraction of alginate from Sargassum muticum: process optimization and study of its functional activities. Journal of Applied Phycology, 2016, 28, 3625-3634.	1.5	58
48	Methane production from formate, acetate and H2/CO2; focusing on kinetics and microbial characterization. Bioresource Technology, 2016, 218, 796-806.	4.8	89
49	Methane Production and Kinetic Modeling for Co-digestion of Manure with Lignocellulosic Residues. Energy & Fuels, 2016, 30, 10516-10523.	2.5	33
50	GHG emission factors for bioelectricity, biomethane, and bioethanol quantified for 24 biomass substrates with consequential life-cycle assessment. Bioresource Technology, 2016, 208, 123-133.	4.8	79
51	Variation in biochemical composition of Saccharina latissima and Laminaria digitata along an estuarine salinity gradient in inner Danish waters. Algal Research, 2016, 13, 235-245.	2.4	61
52	Valorization of macroalga Saccharina latissima as novel feedstock for fermentation-based succinic acid production in a biorefinery approach and economic aspects. Algal Research, 2016, 16, 102-109.	2.4	56
53	Integrated production of cellulosic bioethanol and succinic acid from industrial hemp in a biorefinery concept. Bioresource Technology, 2016, 200, 639-647.	4.8	65
54	Laminaria digitata as a potential carbon source for succinic acid and bioenergy production in a biorefinery perspective. Algal Research, 2015, 9, 126-132.	2.4	61

#	Article	IF	CITATIONS
55	Utilization of CO ₂ Fixating Bacterium <i>Actinobacillus succinogenes</i> 130Z for Simultaneous Biogas Upgrading and Biosuccinic Acid Production. Environmental Science & Technology, 2014, 48, 12464-12468.	4.6	61
56	Life cycle assessment of biofuel production from brown seaweed in Nordic conditions. Bioresource Technology, 2013, 129, 92-99.	4.8	135
57	A model-based methodology for simultaneous design and control of a bioethanol production process. Computers and Chemical Engineering, 2010, 34, 2043-2061.	2.0	32
58	Synthesis, Design and Analysis of Downstream Separation in Bio-refinery Processes through a Group-Contribution Approach. Computer Aided Chemical Engineering, 2010, 28, 1147-1152.	0.3	3
59	Biorefining: Computer aided tools for sustainable design and analysis of bioethanol production. Chemical Engineering Research and Design, 2009, 87, 1171-1183.	2.7	90
60	A Model-Based Methodology for Simultaneous Design and Control of a Bioethanol Production Process. Computer Aided Chemical Engineering, 2009, 27, 237-242.	0.3	0
61	CAPE methods and tools for systematic analysis of new chemical product design and development. Computer Aided Chemical Engineering, 2008, , 997-1002.	0.3	3