Timur Islamoglu

List of Publications by Citations

Source: https://exaly.com/author-pdf/8947055/timur-islamoglu-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

130 papers

6,953 citations

48 h-index 80 g-index

148 ext. papers

9,080 ext. citations

10.9 avg, IF 6.51 L-index

#	Paper	IF	Citations
130	Metal-organic frameworks for the removal of toxic industrial chemicals and chemical warfare agents. <i>Chemical Society Reviews</i> , 2017 , 46, 3357-3385	58.5	557
129	Postsynthetic Tuning of Metal-Organic Frameworks for Targeted Applications. <i>Accounts of Chemical Research</i> , 2017 , 50, 805-813	24.3	488
128	Copper(I)-Catalyzed Synthesis of Nanoporous Azo-Linked Polymers: Impact of Textural Properties on Gas Storage and Selective Carbon Dioxide Capture. <i>Chemistry of Materials</i> , 2014 , 26, 1385-1392	9.6	231
127	Room-Temperature Synthesis of UiO-66 and Thermal Modulation of Densities of Defect Sites. <i>Chemistry of Materials</i> , 2017 , 29, 1357-1361	9.6	217
126	Balancing volumetric and gravimetric uptake in highly porous materials for clean energy. <i>Science</i> , 2020 , 368, 297-303	33.3	215
125	Reticular chemistry in the rational synthesis of functional zirconium cluster-based MOFs. <i>Coordination Chemistry Reviews</i> , 2019 , 386, 32-49	23.2	194
124	Metal-Organic Frameworks against Toxic Chemicals. <i>Chemical Reviews</i> , 2020 , 120, 8130-8160	68.1	191
123	Highly Selective CO2 Capture by Triazine-Based Benzimidazole-Linked Polymers. <i>Macromolecules</i> , 2014 , 47, 8328-8334	5.5	121
122	Impact of post-synthesis modification of nanoporous organic frameworks on small gas uptake and selective CO2 capture. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 10259	13	120
121	Tuning the Surface Chemistry of Metal Organic Framework Nodes: Proton Topology of the Metal-Oxide-Like Zr Nodes of UiO-66 and NU-1000. <i>Journal of the American Chemical Society</i> , 2016 , 138, 15189-15196	16.4	119
120	A porous, electrically conductive hexa-zirconium(iv) metal-organic framework. <i>Chemical Science</i> , 2018 , 9, 4477-4482	9.4	118
119	A Flexible Metal-Organic Framework with 4-Connected Zr Nodes. <i>Journal of the American Chemical Society</i> , 2018 , 140, 11179-11183	16.4	115
118	Targeted synthesis of a mesoporous triptycene-derived covalent organic framework. <i>CrystEngComm</i> , 2013 , 15, 1524-1527	3.3	110
117	Cerium(IV) vs Zirconium(IV) Based Metal Drganic Frameworks for Detoxification of a Nerve Agent. <i>Chemistry of Materials</i> , 2017 , 29, 2672-2675	9.6	106
116	Benchmark Study of Hydrogen Storage in Metal © rganic Frameworks under Temperature and Pressure Swing Conditions. <i>ACS Energy Letters</i> , 2018 , 3, 748-754	20.1	104
115	Energy-based descriptors to rapidly predict hydrogen storage in metalBrganic frameworks. <i>Molecular Systems Design and Engineering</i> , 2019 , 4, 162-174	4.6	100
114	Computer-aided discovery of a metal-organic framework with superior oxygen uptake. <i>Nature Communications</i> , 2018 , 9, 1378	17.4	100

(2016-2019)

113	Topology and porosity control of metal-organic frameworks through linker functionalization. <i>Chemical Science</i> , 2019 , 10, 1186-1192	9.4	90	
112	Zirconium-Based Metal-Organic Frameworks for the Catalytic Hydrolysis of Organophosphorus Nerve Agents. <i>ACS Applied Materials & Description</i> (1997) 12, 14702-14720	9.5	90	
111	Efficient Capture of Perrhenate and Pertechnetate by a Mesoporous Zr Metal®rganic Framework and Examination of Anion Binding Motifs. <i>Chemistry of Materials</i> , 2018 , 30, 1277-1284	9.6	89	
110	Presence versus Proximity: The Role of Pendant Amines in the Catalytic Hydrolysis of a Nerve Agent Simulant. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 1949-1953	16.4	88	
109	Reticular Access to Highly Porous acs-MOFs with Rigid Trigonal Prismatic Linkers for Water Sorption. <i>Journal of the American Chemical Society</i> , 2019 , 141, 2900-2905	16.4	87	
108	Zirconium Metal©rganic Frameworks for Organic Pollutant Adsorption. <i>Trends in Chemistry</i> , 2019 , 1, 304-317	14.8	86	
107	Revisiting the structural homogeneity of NU-1000, a Zr-based metal B rganic framework. <i>CrystEngComm</i> , 2018 , 20, 5913-5918	3.3	83	
106	Vanadium Catalyst on Isostructural Transition Metal, Lanthanide, and Actinide Based Metal-Organic Frameworks for Alcohol Oxidation. <i>Journal of the American Chemical Society</i> , 2019 , 141, 8306-8314	16.4	81	
105	Scalable and Template-Free Aqueous Synthesis of Zirconium-Based Metal-Organic Framework Coating on Textile Fiber. <i>Journal of the American Chemical Society</i> , 2019 , 141, 15626-15633	16.4	77	
104	Benign by Design: Green and Scalable Synthesis of Zirconium UiO-Metal@rganic Frameworks by Water-Assisted Mechanochemistry. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 15841-15849	8.3	77	
103	Detoxification of a Sulfur Mustard Simulant Using a BODIPY-Functionalized Zirconium-Based Metal-Organic Framework. <i>ACS Applied Materials & Early Interfaces</i> , 2017 , 9, 24555-24560	9.5	76	
102	Benzothiazole- and benzoxazole-linked porous polymers for carbon dioxide storage and separation. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 258-265	13	76	
101	Selective Metal Drganic Framework Catalysis of Glucose to 5-Hydroxymethylfurfural Using Phosphate-Modified NU-1000. <i>Industrial & Engineering Chemistry Research</i> , 2017 , 56, 7141-7148	3.9	75	
100	Application of pyrene-derived benzimidazole-linked polymers to CO2 separation under pressure and vacuum swing adsorption settings. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 12492-12500	13	70	
99	A cost-effective synthesis of heteroatom-doped porous carbons as efficient CO2 sorbents. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 14693-14702	13	69	
98	MetalBrganic frameworks: A tunable platform to access single-site heterogeneous catalysts. <i>Applied Catalysis A: General</i> , 2019 , 586, 117214	5.1	68	
97	Synthesis and evaluation of porous azo-linked polymers for carbon dioxide capture and separation. Journal of Materials Chemistry A, 2015 , 3, 20586-20594	13	68	
96	Enhanced Carbon Dioxide Capture from Landfill Gas Using Bifunctionalized Benzimidazole-Linked Polymers. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 14648-55	9.5	64	

95	Zirconium-Based Metal-Organic Frameworks for the Removal of Protein-Bound Uremic Toxin from Human Serum Albumin. <i>Journal of the American Chemical Society</i> , 2019 , 141, 2568-2576	16.4	63
94	Systematic Postsynthetic Modification of Nanoporous Organic Frameworks for Enhanced CO2 Capture from Flue Gas and Landfill Gas. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 2592-2599	3.8	62
93	Integration of Metal-Organic Frameworks on Protective Layers for Destruction of Nerve Agents under Relevant Conditions. <i>Journal of the American Chemical Society</i> , 2019 , 141, 20016-20021	16.4	62
92	Exploiting Interactions to Design an Efficient Sorbent for Atrazine Removal from Water. <i>ACS Applied Materials & Design an Efficient Sorbent for Atrazine Removal from Water. ACS Applied Materials & Design an Efficient Sorbent for Atrazine Removal from Water. <i>ACS Applied Materials & Design an Efficient Sorbent for Atrazine Removal from Water. ACS Applied Materials & Design an Efficient Sorbent for Atrazine Removal from Water. <i>ACS Applied Materials & Design an Efficient Sorbent for Atrazine Removal from Water. ACS Applied Materials & Design an Efficient Sorbent for Atrazine Removal from Water. ACS Applied Materials & Design and Efficient Sorbent for Atrazine Removal from Water. ACS Applied Materials & Design and Efficient Sorbent for Atrazine Removal from Water. ACS Applied Materials & Design and Efficient Sorbent for Atrazine Removal from Water. ACS Applied Materials & Design and Efficient Sorbent for Atrazine Removal from Water. ACS Applied Materials & Design and Efficient For Atrazine Removal from Materials & Design and Efficient For Atrazine Removal for Atrazine Removal from Materials & Design and Efficient For Atrazine Removal from Materials & Design and Efficient For Atrazine Removal from Materials & Design and Efficient For Atrazine Removal from Materials & Design and Efficient For Atrazine Removal from Materials & Design and Efficient For Atrazine Removal from Materials & Design and Efficient For Atrazine Removal from Materials & Design and Efficient For Atrazine Removal from Materials & Design and Efficient For Atrazine Removal from Materials & Design and Efficient For Atrazine Removal from Materials & Design and Efficient For Atrazine Removal from Materials & Design and Efficient For Atrazine Removal from Materials & Design and Efficient For Atrazine Removal from Materials & Design and Efficient For Atrazine Removal from Materials & Design and Efficient For Atrazine Removal from Materials & Design and Efficient For Atrazine Removal from Materials & Design and Efficient For Atrazine Removal from Materi</i></i></i>	9.5	60
91	Lignin-derived heteroatom-doped porous carbons for supercapacitor and CO2 capture applications. <i>International Journal of Energy Research</i> , 2018 , 42, 2686-2700	4.5	59
90	Room Temperature Synthesis of an 8-Connected Zr-Based Metal © rganic Framework for Top-Down Nanoparticle Encapsulation. <i>Chemistry of Materials</i> , 2018 , 30, 2193-2197	9.6	59
89	Tuning the Properties of Zr6O8 Nodes in the Metal Organic Framework UiO-66 by Selection of Node-Bound Ligands and Linkers. <i>Chemistry of Materials</i> , 2019 , 31, 1655-1663	9.6	58
88	An ultra-microporous organic polymer for high performance carbon dioxide capture and separation. <i>Chemical Communications</i> , 2015 , 51, 13393-6	5.8	57
87	Noninvasive Substitution of K Sites in Cyclodextrin Metal-Organic Frameworks by Li Ions. <i>Journal of the American Chemical Society</i> , 2017 , 139, 11020-11023	16.4	55
86	NanoMOFs: little crystallites for substantial applications. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 733	8 <i>-1</i> 7350	54
85	From Transition Metals to Lanthanides to Actinides: Metal-Mediated Tuning of Electronic Properties of Isostructural Metal-Organic Frameworks. <i>Inorganic Chemistry</i> , 2018 , 57, 13246-13251	5.1	54
84	Enhanced Activity of Heterogeneous Pd(II) Catalysts on Acid-Functionalized Metal©rganic Frameworks. <i>ACS Catalysis</i> , 2019 , 9, 5383-5390	13.1	51
83	Direct Imaging of Isolated Single-Molecule Magnets in Metal-Organic Frameworks. <i>Journal of the American Chemical Society</i> , 2019 , 141, 2997-3005	16.4	48
82	Atomistic Approach toward Selective Photocatalytic Oxidation of a Mustard-Gas Simulant: A Case Study with Heavy-Chalcogen-Containing PCN-57 Analogues. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 19535-19540	9.5	44
81	Structural Diversity of Zirconium Metal-Organic Frameworks and Effect on Adsorption of Toxic Chemicals. <i>Journal of the American Chemical Society</i> , 2020 , 142, 21428-21438	16.4	44
80	Improvement of Methane-Framework Interaction by Controlling Pore Size and Functionality of Pillared MOFs. <i>Inorganic Chemistry</i> , 2017 , 56, 2581-2588	5.1	43
79	Tailoring Pore Aperture and Structural Defects in Zirconium-Based Metal®rganic Frameworks for Krypton/Xenon Separation. <i>Chemistry of Materials</i> , 2020 , 32, 3776-3782	9.6	43
78	A historical perspective on porphyrin-based metal-organic frameworks and their applications. <i>Coordination Chemistry Reviews</i> , 2021 , 429,	23.2	43

(2020-2019)

77	Scalable, room temperature, and water-based synthesis of functionalized zirconium-based metalBrganic frameworks for toxic chemical removal. <i>CrystEngComm</i> , 2019 , 21, 2409-2415	3.3	42
76	A Bismuth Metal-Organic Framework as a Contrast Agent for X-ray Computed Tomography <i>ACS Applied Bio Materials</i> , 2019 , 2, 1197-1203	4.1	40
75	Ligand-Directed Reticular Synthesis of Catalytically Active Missing Zirconium-Based Metal-Organic Frameworks. <i>Journal of the American Chemical Society</i> , 2019 , 141, 12229-12235	16.4	39
74	Post-Synthetically Elaborated BODIPY-Based Porous Organic Polymers (POPs) for the Photochemical Detoxification of a Sulfur Mustard Simulant. <i>Journal of the American Chemical Society</i> , 2020 , 142, 18554-18564	16.4	38
73	Zirconium-Based Metal®rganic Framework with 9-Connected Nodes for Ammonia Capture. <i>ACS Applied Nano Materials</i> , 2019 , 2, 6098-6102	5.6	37
72	Toward Base Heterogenization: A Zirconium Metal © rganic Framework/Dendrimer or Polymer Mixture for Rapid Hydrolysis of a Nerve-Agent Simulant. <i>ACS Applied Nano Materials</i> , 2019 , 2, 1005-1008	₃ 5.6	37
71	Tuning the Redox Activity of Metal-Organic Frameworks for Enhanced, Selective O Binding: Design Rules and Ambient Temperature O Chemisorption in a Cobalt-Triazolate Framework. <i>Journal of the American Chemical Society</i> , 2020 , 142, 4317-4328	16.4	36
70	Uncovering the Role of Metal®rganic Framework Topology on the Capture and Reactivity of Chemical Warfare Agents. <i>Chemistry of Materials</i> , 2020 , 32, 4609-4617	9.6	36
69	Observation of reduced thermal conductivity in a metal-organic framework due to the presence of adsorbates. <i>Nature Communications</i> , 2020 , 11, 4010	17.4	36
68	Controlling the Polymorphism and Topology Transformation in Porphyrinic Zirconium Metal-Organic Frameworks via Mechanochemistry. <i>Journal of the American Chemical Society</i> , 2019 , 141, 19214-19220	16.4	36
67	Porosity Dependence of Compression and Lattice Rigidity in Metal-Organic Framework Series. Journal of the American Chemical Society, 2019 , 141, 4365-4371	16.4	34
66	Synthesis and functionalization of phase-pure NU-901 for enhanced CO2 adsorption: the influence of a zirconium salt and modulator on the topology and phase purity. <i>CrystEngComm</i> , 2018 , 20, 7066-707	<i>∂</i> .3	34
65	Effect of acid-catalyzed formation rates of benzimidazole-linked polymers on porosity and selective CO2 capture from gas mixtures. <i>Environmental Science & Environmental Scie</i>	10.3	31
64	Ammonia Capture within Isoreticular Metal®rganic Frameworks with Rod Secondary Building Units 2019 , 1, 476-480		28
63	Fiber Composites of Metal®rganic Frameworks. <i>Chemistry of Materials</i> , 2020 , 32, 7120-7140	9.6	28
62	Facile and Scalable Coating of Metal-Organic Frameworks on Fibrous Substrates by a Coordination Replication Method at Room Temperature. <i>ACS Applied Materials & Description</i> , 11, 22714-227	24 ⁵	26
61	Synthetic Control of Thorium Polyoxo-Clusters in Metal©rganic Frameworks toward New Thorium-Based Materials. <i>ACS Applied Nano Materials</i> , 2019 , 2, 2260-2265	5.6	26
60	Isothermal Titration Calorimetry to Explore the Parameter Space of Organophosphorus Agrochemical Adsorption in MOFs. <i>Journal of the American Chemical Society</i> , 2020 , 142, 12357-12366	16.4	26

59	Photoexcited Naphthalene Diimide Radical Anion Linking the Nodes of a Metal©rganic Framework: A Heterogeneous Super-reductant. <i>Chemistry of Materials</i> , 2018 , 30, 2488-2492	9.6	26
58	Efficient extraction of inorganic selenium from water by a Zr metalBrganic framework: investigation of volumetric uptake capacity and binding motifs. <i>CrystEngComm</i> , 2018 , 20, 6140-6145	3.3	26
57	Interplay of Lewis and Brfisted Acid Sites in Zr-Based Metal-Organic Frameworks for Efficient Esterification of Biomass-Derived Levulinic Acid. <i>ACS Applied Materials & Derived Levulinic Acid. ACS Acid. A</i>	0 ⁹ 3 ⁵ 209	96 ²⁵
56	Guest-Dependent Single-Crystal-to-Single-Crystal Phase Transitions in a Two-Dimensional Uranyl-Based Metal®rganic Framework. <i>Crystal Growth and Design</i> , 2019 , 19, 506-512	3.5	25
55	Structural Features of Zirconium-Based Metal Organic Frameworks Affecting Radiolytic Stability. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 7520-7526	3.9	24
54	Metal-Organic-Framework-Supported and -Isolated Ceria Clusters with Mixed Oxidation States. <i>ACS Applied Materials & Discours (19</i> , 11, 47822-47829)	9.5	24
53	Realization of Lithium-Ion Capacitors with Enhanced Energy Density via the Use of Gadolinium Hexacyanocobaltate as a Cathode Material. <i>ACS Applied Materials & Description of Lithium (Capacitors)</i> 11, 31799-31	8 <i>85</i> ⁵	23
52	Rational Design of Pore Size and Functionality in a Series of Isoreticular Zwitterionic Metal©rganic Frameworks. <i>Chemistry of Materials</i> , 2018 , 30, 8332-8342	9.6	23
51	Solvent-assisted linker exchange enabled preparation of cerium-based metalorganic frameworks constructed from redox active linkers. <i>Inorganic Chemistry Frontiers</i> , 2020 , 7, 984-990	6.8	22
50	Presence versus Proximity: The Role of Pendant Amines in the Catalytic Hydrolysis of a Nerve Agent Simulant. <i>Angewandte Chemie</i> , 2018 , 130, 1967-1971	3.6	22
49	A Flexible Interpenetrated Zirconium-Based Metal-Organic Framework with High Affinity toward Ammonia. <i>ChemSusChem</i> , 2020 , 13, 1710-1714	8.3	21
48	Torsion Angle Effect on the Activation of UiO Metal-Organic Frameworks. <i>ACS Applied Materials</i> & Amp; Interfaces, 2019 , 11, 15788-15794	9.5	20
47	Linker Competition within a Metal-Organic Framework for Topological Insights. <i>Inorganic Chemistry</i> , 2019 , 58, 1513-1517	5.1	20
46	Small Molecules, Big Effects: Tuning Adsorption and Catalytic Properties of Metal@rganic Frameworks. <i>Chemistry of Materials</i> , 2021 , 33, 1444-1454	9.6	19
45	Benign Integration of a Zn-Azolate Metal-Organic Framework onto Textile Fiber for Ammonia Capture. <i>ACS Applied Materials & Acs Applied & Acs Ap</i>	9.5	18
44	Process-level modelling and optimization to evaluate metal@rganic frameworks for post-combustion capture of CO2. <i>Molecular Systems Design and Engineering</i> , 2020 , 5, 1205-1218	4.6	17
43	Efficient Removal of Per- and Polyfluoroalkyl Substances from Water with Zirconium-Based Metal Drganic Frameworks. <i>Chemistry of Materials</i> , 2021 , 33, 3276-3285	9.6	17
42	Designing Porous Materials to Resist Compression: Mechanical Reinforcement of a Zr-MOF with Structural Linkers. <i>Chemistry of Materials</i> , 2020 , 32, 3545-3552	9.6	16

(2021-2020)

41	Catalytic Degradation of an Organophosphorus Agent at ZnDH Sites in a MetalDrganic Framework. <i>Chemistry of Materials</i> , 2020 , 32, 6998-7004	9.6	16	
40	Fine-Tuning a Robust Metal-Organic Framework toward Enhanced Clean Energy Gas Storage. Journal of the American Chemical Society, 2021 , 143, 18838-18843	16.4	14	
39	Systematic Study on the Removal of Per- and Polyfluoroalkyl Substances from Contaminated Groundwater Using Metal-Organic Frameworks. <i>Environmental Science & Environmental Sc</i>	6 12 -135	1 71	
38	Reactive Porous Polymers for Detoxification of a Chemical Warfare Agent Simulant. <i>Chemistry of Materials</i> , 2020 , 32, 9299-9306	9.6	14	
37	Benzothiazolium-functionalized NU-1000: a versatile material for carbon dioxide adsorption and cyanide luminescence sensing. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 7492-7500	7.1	13	
36	How Reproducible are Surface Areas Calculated from the BET Equation?. Advanced Materials,2201502	24	12	
35	Green Synthesis of a Functionalized Zirconium-Based Metal Drganic Framework for Water and Ethanol Adsorption. <i>Inorganics</i> , 2019 , 7, 56	2.9	11	
34	Precise Control of Cu Nanoparticle Size and Catalytic Activity through Pore Templating in Zr Metal D rganic Frameworks. <i>Chemistry of Materials</i> , 2020 , 32, 3078-3086	9.6	11	
33	Insights into the StructureActivity Relationships in MetalDrganic Framework-Supported Nickel Catalysts for Ethylene Hydrogenation. <i>ACS Catalysis</i> , 2020 , 10, 8995-9005	13.1	11	
32	Near-instantaneous catalytic hydrolysis of organophosphorus nerve agents with zirconium-based MOF/hydrogel composites. <i>Chem Catalysis</i> , 2021 , 1, 721-733		11	
31	Cross-linked porous polyurethane materials featuring dodecaborate clusters as inorganic polyol equivalents. <i>Chemical Communications</i> , 2019 , 55, 8852-8855	5.8	10	
30	Modular Synthesis of Highly Porous Zr-MOFs Assembled from Simple Building Blocks for Oxygen Storage. <i>ACS Applied Materials & amp; Interfaces</i> , 2019 , 11, 42179-42185	9.5	10	
29	Maximizing Magnetic Resonance Contrast in Gd(III) Nanoconjugates: Investigation of Proton Relaxation in Zirconium Metal-Organic Frameworks. <i>ACS Applied Materials & Discourse (Contract)</i> , 12, 41157-41166	9.5	10	
28	Supramolecular Porous Assemblies of Atomically Precise Catalytically Active Cerium-Based Clusters. <i>Chemistry of Materials</i> , 2020 , 32, 8522-8529	9.6	10	
27	Zirconium Metal-Organic Frameworks Integrating Chloride Ions for Ammonia Capture and/or Chemical Separation. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 22485-22494	9.5	10	
26	Insights into Catalytic Hydrolysis of Organophosphonates at M-OH Sites of Azolate-Based Metal Organic Frameworks. <i>Journal of the American Chemical Society</i> , 2021 , 143, 9893-9900	16.4	10	
25	Proton Conductivity via Trapped Water in Phosphonate-Based Metal-Organic Frameworks Synthesized in Aqueous Media. <i>Inorganic Chemistry</i> , 2021 , 60, 1086-1091	5.1	10	
24	Immobilized Regenerable Active Chlorine within a Zirconium-Based MOF Textile Composite to Eliminate Biological and Chemical Threats. <i>Journal of the American Chemical Society</i> , 2021 , 143, 16777-1	6785	10	

23	Combining solvent-assisted linker exchange and transmetallation strategies to obtain a new non-catenated nickel (II) pillared-paddlewheel MOF. <i>Inorganic Chemistry Communication</i> , 2016 , 67, 60-6	3 ^{3.1}	9
22	Mechanistic Study on the Origin of the Trans Selectivity in Alkyne Semihydrogenation by a Heterobimetallic Rhodium Gallium Catalyst in a Metal Drganic Framework. <i>Organometallics</i> , 2019 , 38, 3466-3473	3.8	9
21	Tuning the Atrazine Binding Sites in an Indium-Based Flexible Metal-Organic Framework. <i>ACS Applied Materials & Discourse Materials </i>	9.5	9
20	Air oxidation of sulfur mustard gas simulants using a pyrene-based metal-organic framework photocatalyst. <i>Beilstein Journal of Nanotechnology</i> , 2019 , 10, 2422-2427	3	9
19	Transient Catenation in a Zirconium-Based Metal-Organic Framework and Its Effect on Mechanical Stability and Sorption Properties. <i>Journal of the American Chemical Society</i> , 2021 , 143, 1503-1512	16.4	9
18	Postsynthetically Modified Polymers of Intrinsic Microporosity (PIMs) for Capturing Toxic Gases. <i>ACS Applied Materials & District ACS ACS ACS ACS ACS ACS ACS ACS ACS ACS</i>	9.5	9
17	Modulation of crystal growth and structure within cerium-based metalBrganic frameworks. <i>CrystEngComm</i> , 2020 , 22, 8182-8188	3.3	8
16	Controlling Polymorphism and Orientation of NU-901/NU-1000 Metal®rganic Framework Thin Films. <i>Chemistry of Materials</i> , 2020 , 32, 10556-10565	9.6	7
15	Control of the Porosity in Manganese Trimer-Based Metal-Organic Frameworks by Linker Functionalization. <i>Inorganic Chemistry</i> , 2020 , 59, 8444-8450	5.1	7
14	Benign Synthesis and Modification of a ZnAzolate MetalOrganic Framework for Enhanced Ammonia Uptake and Catalytic Hydrolysis of an Organophosphorus Chemical 2021 , 3, 1363-1368		7
13	Uniform, Binary Functionalization of a Metal-Organic Framework Material. <i>Inorganic Chemistry</i> , 2019 , 58, 8906-8909	5.1	6
12	Are you using the right probe molecules for assessing the textural properties of metalorganic frameworks?. <i>Journal of Materials Chemistry A</i> , 2021 , 10, 157-173	13	6
11	Time-Resolved in Situ Polymorphic Transformation from One 12-Connected Zr-MOF to Another 2020 , 2, 499-504		6
10	Development of a Metal Drganic Framework/Textile Composite for the Rapid Degradation and Sensitive Detection of the Nerve Agent VX. <i>Chemistry of Materials</i> , 2022 , 34, 1269-1277	9.6	5
9	Investigating the Influence of Hexanuclear Clusters in Isostructural Metal-Organic Frameworks on Toxic Gas Adsorption ACS Applied Materials & Interfaces, 2022,	9.5	5
8	How Reproducible Are Surface Areas Calculated from the BET Equation?		5
7	An Amidoxime-Functionalized Porous Reactive Fiber against Toxic Chemicals 2021 , 3, 320-326		4
6	Phosphonates Meet Metal@rganic Frameworks: Towards CO2 Adsorption. <i>Israel Journal of Chemistry</i> , 2018 , 58, 1164-1170	3.4	4

LIST OF PUBLICATIONS

5	Rapid Quantification of Mass Transfer Barriers in Metal Drganic Framework Crystals. <i>Chemistry of Materials</i> ,	9.6	3
4	Discovery of spontaneous de-interpenetration through charged point-point repulsions. <i>CheM</i> , 2021	16.2	3
3	Micropore environment regulation of zirconium MOFs for instantaneous hydrolysis of an organophosphorus chemical. <i>Cell Reports Physical Science</i> , 2021 , 2, 100612	6.1	3
2	Nanoporous Water-Stable Zr-Based Metal©rganic Frameworks for Water Adsorption. <i>ACS Applied Nano Materials</i> , 2021 , 4, 4346-4350	5.6	3

Insights into Mass Transfer Barriers in Metal Drganic Frameworks. Chemistry of Materials, 2022, 34, 4134-4641 2