
Hélia G Cardoso

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8946906/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Stress-Induced Accumulation of DcAOX1 and DcAOX2a Transcripts Coincides with Critical Time Point for Structural Biomass Prediction in Carrot Primary Cultures (Daucus carota L.). Frontiers in Genetics, 2016, 7, 1.	2.3	120
2	Coconut water and BAP successfully replaced zeatin in olive (Olea europaea L.) micropropagation. Scientia Horticulturae, 2007, 113, 1-7.	3.6	69
3	Physiologic responses and gene diversity indicate olive alternative oxidase as a potential source for markers involved in efficient adventitious root induction. Physiologia Plantarum, 2009, 137, 532-552.	5.2	61
4	Reference Genes Selection and Normalization of Oxidative Stress Responsive Genes upon Different Temperature Stress Conditions in Hypericum perforatum L. PLoS ONE, 2014, 9, e115206.	2.5	44
5	Differential expression and coâ€regulation of carrot <i>AOX</i> genes (<i>Daucus carota</i>). Physiologia Plantarum, 2009, 137, 578-591.	5.2	43
6	Involvement of alternative oxidase (AOX) in adventitious rooting of Olea europaea L. microshoots is linked to adaptive phenylpropanoid and lignin metabolism. Plant Cell Reports, 2012, 31, 1581-1590.	5.6	42
7	Carrot alternative oxidase gene <i>AOX2a</i> demonstrates allelic and genotypic polymorphisms in intron 3. Physiologia Plantarum, 2009, 137, 592-608.	5.2	36
8	Alternative oxidase (AOX) and phenolic metabolism in methyl jasmonate-treated hairy root cultures of Daucus carota L Journal of Plant Physiology, 2012, 169, 657-663.	3.5	35
9	The alternative oxidase family of <i>Vitis vinifera</i> reveals an attractive model to study the importance of genomic design. Physiologia Plantarum, 2009, 137, 553-565.	5.2	34
10	Alternative oxidase involvement in <i>Daucus carota</i> somatic embryogenesis. Physiologia Plantarum, 2009, 137, 498-508.	5.2	34
11	Intron polymorphism pattern in <i>AOX1b</i> of wild St John's wort (<i>Hypericum perforatum</i>) allows discrimination between individual plants. Physiologia Plantarum, 2009, 137, 520-531.	5.2	32
12	Daucus carota L. – An old model for cell reprogramming gains new importance through a novel expansion pattern of alternative oxidase (AOX) genes. Plant Physiology and Biochemistry, 2009, 47, 753-759.	5.8	32
13	Allelic variation on DcAOX1 gene in carrot (Daucus carota L.): An interesting simple sequence repeat in a highly variable intron. Plant Gene, 2016, 5, 49-55.	2.3	25
14	The gymnosperm <i>Pinus pinea</i> contains both <i>AOX</i> gene subfamilies, <i>AOX1</i> and <i>AOX2</i> . Physiologia Plantarum, 2009, 137, 566-577.	5.2	23
15	Intra and Inter-Spore Variability in Rhizophagus irregularis AOX Gene. PLoS ONE, 2015, 10, e0142339.	2.5	23
16	AOX1-Subfamily Gene Members in Olea europaea cv. "Galega Vulgarâ€â€"Gene Characterization and Expression of Transcripts during IBA-Induced in Vitro Adventitious Rooting. International Journal of Molecular Sciences, 2018, 19, 597.	4.1	23
17	Selection of suitable reference genes for reverse transcription quantitative real-time PCR studies on different experimental systems from carrot (Daucus carota L.). Scientia Horticulturae, 2015, 186, 115-123.	3.6	22
18	Expression Profile of PIN-Formed Auxin Efflux Carrier Genes during IBA-Induced In Vitro Adventitious Rooting in Olea europaea L Plants, 2020, 9, 185.	3.5	17

HéLIA G CARDOSO

#	Article	IF	CITATIONS
19	Polymorphisms in intron 1 of carrot <i>AOX2b</i> – a useful tool to develop a functional marker?. Plant Genetic Resources: Characterisation and Utilisation, 2011, 9, 177-180.	0.8	13
20	Somatic Embryogenesis from Mature Embryos of Olea europaea L. cv. â€~Galega Vulgar' and Long-Term Management of Calli Morphogenic Capacity. Plants, 2020, 9, 758.	3.5	13
21	Alternative Oxidase Gene Family in Hypericum perforatum L.: Characterization and Expression at the Post-germinative Phase. Frontiers in Plant Science, 2016, 7, 1043.	3.6	12
	Use of morphometric parameters for tracking ovule and microspore evolution in grapevine (Vitis) Tj ETQq0 0 0	0	
22	embryogenesis efficiency from gametophyte tissues. In Vitro Cellular and Developmental Biology - Plant, 2010, 46, 499-508.	2.1	10
23	Carrot antifreeze protein enhances chilling tolerance in transgenic tomato. Acta Physiologiae Plantarum, 2014, 36, 21-27.	2.1	10
24	Do Mitochondria Play a Central Role in Stress-Induced Somatic Embryogenesis?. Methods in Molecular Biology, 2016, 1359, 87-100.	0.9	9
25	Response of Mycorrhizal 'Touriga Nacionalâ€~ Variety Grapevines to High Temperatures Measured by Calorespirometry and Near-Infrared Spectroscopy. Plants, 2020, 9, 1499.	3.5	8
26	Isolation and characterization of plastid terminal oxidase gene from carrot and its relation to carotenoid accumulation. Plant Gene, 2016, 5, 13-21.	2.3	7
27	Carrot plastid terminal oxidase gene (DcPTOX) responds early to chilling and harbors intronic pre-miRNAs related to plant disease defense. Plant Gene, 2016, 7, 21-25.	2.3	7
28	A TaqMan real-time PCR method based on alternative oxidase genes for detection of plant species in animal feed samples. PLoS ONE, 2018, 13, e0190668.	2.5	7
29	Carrot AOX2a Transcript Profile Responds to Growth and Chilling Exposure. Plants, 2021, 10, 2369.	3.5	7
30	ExploringAOXgene diversity. , 2015, , 239-254.		6
31	Laser Microdissection of Specific Stem-Base Tissue Types from Olive Microcuttings for Isolation of High-Quality RNA. Biology, 2021, 10, 209.	2.8	4
32	Ex Vitro Rooting and Simultaneous Micrografting of the Walnut Hybrid Rootstock â€~Paradox' (Juglans) Tj I	TQ <u>9</u> 000	rgBŢ /Overloc
33	Exploring the Applicability of Calorespirometry to Assess Seed Metabolic Stability Upon Temperature Stress Conditions—Pisum sativum L. Used as a Case Study. Frontiers in Plant Science, 2022, 13, 827117.	3.6	4
34	Interlaboratory Comparison of Methods Determining the Botanical Composition of Animal Feed. Journal of AOAC INTERNATIONAL, 2018, 101, 227-234.	1.5	3
35	Genome Modification Approaches to Improve Performance, Quality, and Stress Tolerance of Important Mediterranean Fruit Species (Olea europaea L., Vitis vinifera L., and Quercus suber L.). , 2019, , 273-312.		2
36	Somatic Embryogenesis in Iberian Grapevine (Vitis vinifera) Cultivars Using Carpels as Initial Explants: Protocol Establishment and Histological Evaluation. Journal of Agricultural Science and Technology B, 2019, 9, .	0.1	2

Hélia G Cardoso

#	Article	IF	CITATIONS
37	Editorial: Advances on the Biological Mechanisms Involved in Adventitious Root Formation: From Signaling to Morphogenesis. Frontiers in Plant Science, 2022, 13, 867651.	3.6	2
38	Understanding the Role of PIN Auxin Carrier Genes under Biotic and Abiotic Stresses in Olea europaea L Biology, 2022, 11, 1040.	2.8	2
39	Cost effective method for construction of high quality cDNA libraries. New Biotechnology, 2007, 24, 419-421.	2.7	1
40	SIMPLIFYING PROCEDURES TO INCREASE COMPETITIVENESS AT IN VITRO PROPAGATION OF THE OLIVE CULTIVAR 'GALEGA VULGAR'. Acta Horticulturae, 2009, , 277-283.	0.2	1
41	Functional marker development fromAOXgenes requires deep phenotyping and individualized diagnosis. , 2015, , 273-280.		0
42	Screening natural variability for carrot breeding application – a target gene approach. Acta Horticulturae, 2017, , 69-76.	0.2	0
43	Characterization of the plastid terminal oxidase gene in carrot-involvement in carotenoids accumulation during storage root development. Acta Horticulturae, 2017, , 85-92.	0.2	0
44	OPTIMIZATION OF A PARTICLE BOMBARDMENT PROTOCOL FOR VITIS VINIFERA CV. 'TRINCADEIRA' AND CV. 'ARAGONEZ' TRANSFORMATION. Acta Horticulturae, 2004, , 407-413.	0.2	0
45	GENETIC TRANSFORMATION OF V. VINIFERA - TWO ALTERNATIVE SYSTEMS UNDER EVALUATION. Acta Horticulturae, 2012, , 421-427.	0.2	0