RadosÅ,aw MrÃ³wczyÅ,,ski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8946609/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Replacing amine by azide: dopamine azide polymerization triggered by sodium periodate. Polymer Chemistry, 2022, 13, 3325-3334.	1.9	6
2	In-situ thickness control of centimetre-scale 2D-Like polydopamine films with large scalability. Materials Today Chemistry, 2022, 24, 100935.	1.7	9
3	Efficient photocatalytic production of hydrogen by exploiting the polydopamine-semiconductor interface. Applied Catalysis B: Environmental, 2021, 280, 119423.	10.8	77
4	Polydopamine Films with 2D-like Layered Structure and High Mechanical Resilience. ACS Applied Materials & Interfaces, 2021, 13, 23113-23120.	4.0	44
5	Electron Spin Relaxation Studies of Polydopamine Radicals. Journal of Physical Chemistry B, 2021, 125, 841-849.	1.2	10
6	Polyamidoamine Dendrimers Decorated Multifunctional Polydopamine Nanoparticles for Targeted Chemo- and Photothermal Therapy of Liver Cancer Model. International Journal of Molecular Sciences, 2021, 22, 738.	1.8	21
7	Magnetic Nanoparticles as a Carrier of dsRNA for Gene Therapy. Methods in Molecular Biology, 2021, 2211, 69-81.	0.4	4
8	Facile and Controllable Growth of β-FeOOH Nanostructures on Polydopamine Spheres. Journal of Physical Chemistry B, 2020, 124, 9456-9463.	1.2	8
9	Synthesis and photoluminescence properties of hybrid 1D core–shell structured nanocomposites based on ZnO/polydopamine. RSC Advances, 2020, 10, 29751-29758.	1.7	34
10	<p>Magnetite Nanoparticles and Spheres for Chemo- and Photothermal Therapy of Hepatocellular Carcinoma in vitro</p> . International Journal of Nanomedicine, 2020, Volume 15, 7923-7936.	3.3	34
11	Influence of PDA Coating on the Structural, Optical and Surface Properties of ZnO Nanostructures. Nanomaterials, 2020, 10, 2438.	1.9	21
12	NDs@PDA@ICG Conjugates for Photothermal Therapy of Glioblastoma Multiforme. Biomimetics, 2019, 4, 3.	1.5	57
13	The Effect of Tissue-Mimicking Phantom Compressibility on Magnetic Hyperthermia. Nanomaterials, 2019, 9, 803.	1.9	28
14	Nano-mediated delivery of double-stranded RNA for gene therapy of glioblastoma multiforme. PLoS ONE, 2019, 14, e0213852.	1.1	31
15	Dendrimer based theranostic nanostructures for combined chemo- and photothermal therapy of liver cancer cells in vitro. Colloids and Surfaces B: Biointerfaces, 2019, 173, 698-708.	2.5	78
16	Polydopamine-Based Multifunctional (Nano)materials for Cancer Therapy. ACS Applied Materials & Interfaces, 2018, 10, 7541-7561.	4.0	205
17	Cyclodextrin-Based Magnetic Nanoparticles for Cancer Therapy. Nanomaterials, 2018, 8, 170.	1.9	61
18	Anchoring Fe3O4 nanoparticles in a reduced graphene oxide aerogel matrix via polydopamine coating. Beilstein Journal of Nanotechnology, 2018, 9, 591-601.	1.5	9

Radoså,aw MrÃ³wczyå,,ski

#	Article	IF	CITATIONS
19	Polydopamine grafted on an advanced Fe3O4/lignin hybrid material and its evaluation in biosensing. Applied Surface Science, 2018, 455, 455-464.	3.1	49
20	In vitro genotoxicity and cytotoxicity of polydopamine-coated magnetic nanostructures. Toxicology in Vitro, 2017, 44, 256-265.	1.1	23
21	Overmodulation of projections as signalâ€ŧoâ€noise enhancement method in EPR imaging. Magnetic Resonance in Chemistry, 2016, 54, 136-142.	1.1	4
22	Chemistry of polydopamine analogues. Polymer International, 2016, 65, 1288-1299.	1.6	86
23	Assessment of polydopamine coated magnetic nanoparticles in doxorubicin delivery. RSC Advances, 2016, 6, 5936-5943.	1.7	53
24	Functionalization of polydopamine coated magnetic nanoparticles with biological entities. AIP Conference Proceedings, 2015, , .	0.3	0
25	Polydopamine – A Versatile Coating for Surfaceâ€Initiated Ringâ€Opening Polymerization of Lactide to Polylactide. Macromolecular Chemistry and Physics, 2015, 216, 211-217.	1.1	22
26	Electron Paramagnetic Resonance Imaging and Spectroscopy of Polydopamine Radicals. Journal of Physical Chemistry B, 2015, 119, 10341-10347.	1.2	40
27	Melanin-like polydopa amides – synthesis and application in functionalization of magnetic nanoparticles. Polymer Chemistry, 2015, 6, 2139-2149.	1.9	23
28	Diazo transfer at polydopamine – a new way to functionalization. Polymer Chemistry, 2014, 5, 6593-6599.	1.9	22
29	Magnetic nanoparticle-supported organocatalysts – an efficient way of recycling and reuse. RSC Advances, 2014, 4, 5927.	1.7	128
30	Polydopamine—An Organocatalyst Rather than an Innocent Polymer. Chemistry - A European Journal, 2014, 20, 8647-8653.	1.7	72
31	Structure of Polydopamine: A Never-Ending Story?. Langmuir, 2013, 29, 10539-10548.	1.6	834
32	New versatile polydopamine coated functionalized magnetic nanoparticles. Materials Chemistry and Physics, 2013, 138, 295-302.	2.0	57
33	Synthesis and characterization of new magnetic polydopamine composites. AIP Conference Proceedings, 2013, , .	0.3	1
34	One-step ligand exchange reaction as an efficient way for functionalization of magnetic nanoparticles. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	2