
Olga Selyutina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8946036/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Glycyrrhizic acid as a multifunctional drug carrier – From physicochemical properties to biomedical applications: A modern insight on the ancient drug. International Journal of Pharmaceutics, 2019, 559, 271-279.	5.2	122
2	Influence of glycyrrhizin on permeability and elasticity of cell membrane: perspectives for drugs delivery. Drug Delivery, 2016, 23, 848-855.	5.7	92
3	Spectroscopic and molecular dynamics characterization of glycyrrhizin membrane-modifying activity. Colloids and Surfaces B: Biointerfaces, 2016, 147, 459-466.	5.0	66
4	Solubilization and stabilization of macular carotenoids by water soluble oligosaccharides and polysaccharides. Archives of Biochemistry and Biophysics, 2015, 572, 58-65.	3.0	59
5	Disodium salt of glycyrrhizic acid – A novel supramolecular delivery system for anthelmintic drug praziquantel. Journal of Drug Delivery Science and Technology, 2019, 50, 66-77.	3.0	36
6	Glycyrrhizin-Assisted Transport of Praziquantel Anthelmintic Drug through the Lipid Membrane: An Experiment and MD Simulation. Molecular Pharmaceutics, 2019, 16, 3188-3198.	4.6	34
7	Effect of natural polysaccharides and oligosaccharides on the permeability of cell membranes. Russian Chemical Bulletin, 2017, 66, 129-135.	1.5	29
8	Effective inhibition of copper-catalyzed production of hydroxyl radicals by deferiprone. Journal of Biological Inorganic Chemistry, 2019, 24, 331-341.	2.6	27
9	Membrane-modifying activity of glycyrrhizic acid. Russian Chemical Bulletin, 2015, 64, 1555-1559.	1.5	23
10	Mechanistic Insights of Chelator Complexes with Essential Transition Metals: Antioxidant/Pro-Oxidant Activity and Applications in Medicine. International Journal of Molecular Sciences, 2022, 23, 1247.	4.1	23
11	Structure of dimers of glycyrrhizic acid in water and their complexes with cholesterol: Molecular dynamics simulation. Journal of Structural Chemistry, 2015, 56, 67-76.	1.0	21
12	Glycyrrhizin-induced changes in phospholipid dynamics studied by 1H NMR and MD simulation. Archives of Biochemistry and Biophysics, 2020, 686, 108368.	3.0	21
13	NMR Relaxation Study of Cholesterol Binding with Plant Metabolites. Applied Magnetic Resonance, 2011, 41, 283-294.	1.2	19
14	Arabinogalactan and glycyrrhizin based nanopesticides as novel delivery systems for plant protection. Environmental Science and Pollution Research, 2020, 27, 5864-5872.	5.3	17
15	Effect of glycyrrhizic acid on hemolysis of red blood cells and properties of cell membranes. Russian Chemical Bulletin, 2014, 63, 1201-1204.	1.5	13
16	Natural Poly- and Oligosaccharides as Novel Delivery Systems for Plant Protection Compounds. Journal of Agricultural and Food Chemistry, 2017, 65, 6582-6587.	5.2	13
17	pH-Sensitive Glycyrrhizin Based Vesicles for Nifedipine Delivery. Molecules, 2021, 26, 1270.	3.8	11
18	Effect of Glycyrrhizic Acid and Arabinogalactan on the Membrane Potential of Rat Thymocytes Studied by Potential-Sensitive Fluorescent Probe. Journal of Membrane Biology, 2020, 253, 343-356.	2.1	10

Olga Selyutina

#	Article	IF	CITATIONS
19	Antioxidant Activity of Deferasirox and Its Metal Complexes in Model Systems of Oxidative Damage: Comparison with Deferiprone. Molecules, 2021, 26, 5064.	3.8	10
20	The Interplay of Ascorbic Acid with Quinones-Chelators—Influence on Lipid Peroxidation: Insight into Anticancer Activity. Antioxidants, 2022, 11, 376.	5.1	9
21	Light-Stimulated Generation of Free Radicals by Quinones-Chelators. Zeitschrift Fur Physikalische Chemie, 2017, 231, 369-389.	2.8	8
22	Complex of praseodymium with lipid as a NMR temperature sensor and probe of liposome states. New Journal of Chemistry, 2020, 44, 18372-18379.	2.8	7
23	Ascorbate-and iron-driven redox activity of Dp44mT and Emodin facilitates peroxidation of micelles and bicelles. Biochimica Et Biophysica Acta - General Subjects, 2022, 1866, 130078.	2.4	7
24	Photoinduced Oxidation of Lipid Membranes in the Presence of the Nonsteroidal Anti-Inflammatory Drug Ketoprofen. Membranes, 2022, 12, 251.	3.0	7
25	Experimental and Theoretical Study of Emodin Interaction with Phospholipid Bilayer and Linoleic Acid. Applied Magnetic Resonance, 2020, 51, 951-960.	1.2	6
26	Stereoselectivity of Interaction of Nonsteroidal Anti-Inflammatory Drug S-Ketoprofen with L/D-Tryptophan in Phospholipid Membranes. Membranes, 2022, 12, 460.	3.0	6
27	Effect of glycyrrhizic acid on phospholipid membranes in media with different pH. Russian Chemical Bulletin, 2021, 70, 2434-2439.	1.5	5
28	Thulium complex with DOPC as 1H NMR temperature sensor. Chemical Physics Letters, 2021, 763, 138215.	2.6	4
29	Physicochemical and Toxic Properties of Novel Genipin Drug Delivery Systems Prepared by Mechanochemistry. Current Drug Delivery, 2018, 15, 727-736.	1.6	4
30	Holmium complex with phospholipids as 1H NMR temperature probe for membrane systems. BioMetals, 2022, 35, 629-637.	4.1	4
31	Optical Configuration Effect on the Structure and Reactivity of Diastereomers Revealed by Spin Effects and Molecular Dynamics Calculations. International Journal of Molecular Sciences, 2022, 23, 38.	4.1	3