D Samuel Schwarzkopf

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8945785/publications.pdf

Version: 2024-02-01

64 papers 2,529 citations

201385 27 h-index 233125 45 g-index

74 all docs

74 docs citations

times ranked

74

2701 citing authors

#	Article	IF	Citations
1	The human primary visual cortex (V1) encodes the perceived position of static but not moving objects. Communications Biology, 2022, 5, 181.	2.0	7
2	Highly accurate retinotopic maps of the physiological blind spot in human visual cortex. Human Brain Mapping, 2022, 43, 5111-5125.	1.9	6
3	Inferior Occipital Gyrus Is Organized along Common Gradients of Spatial and Face-Part Selectivity. Journal of Neuroscience, 2021, 41, 5511-5521.	1.7	16
4	Heritable functional architecture in human visual cortex. Neurolmage, 2021, 239, 118286.	2.1	9
5	Spatial Heterogeneity in Bistable Figure-Ground Perception. I-Perception, 2020, 11, 204166952096112.	0.8	6
6	Topographic signatures of global object perception in human visual cortex. NeuroImage, 2020, 220, 116926.	2.1	12
7	Mapping sequences can bias population receptive field estimates. Neurolmage, 2020, 211, 116636.	2.1	14
8	Altered visual population receptive fields in human albinism. Cortex, 2020, 128, 107-123.	1.1	4
9	The Ebbinghaus Illusion depends on Cortical Distance. Journal of Vision, 2020, 20, 225.	0.1	O
10	Size Perception Biases Are Temporally Stable and Vary Consistently Between Visual Field Meridians. I-Perception, 2019, 10, 204166951987872.	0.8	5
11	The red thread in the maze. Cortex, 2019, 113, 350-351.	1.1	1
12	Population receptive field estimates for motion-defined stimuli. NeuroImage, 2019, 199, 245-260.	2.1	6
13	Individual differences in visual salience vary along semantic dimensions. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11687-11692.	3.3	67
14	Comparison of human population receptive field estimates between scanners and the effect of temporal filtering. F1000Research, 2019, 8, 1681.	0.8	10
15	Assessing cognitive dysfunction in Parkinson's disease: An online tool to detect visuoâ€perceptual deficits. Movement Disorders, 2018, 33, 544-553.	2.2	25
16	Bayesian population receptive field modelling. NeuroImage, 2018, 180, 173-187.	2.1	56
17	Visual working memory performance in aphantasia. Cortex, 2018, 105, 61-73.	1.1	61
18	The optimal experimental design for multiple alternatives perceptual search. Attention, Perception, and Psychophysics, 2018, 80, 1962-1973.	0.7	2

#	Article	IF	Citations
19	Feature–location effects in the Thatcher illusion. Journal of Vision, 2018, 18, 16.	0.1	13
20	Perceptual similarity and the neural correlates of geometrical illusions in human brain structure. Scientific Reports, 2017, 7, 39968.	1.6	26
21	Metacognitive ability correlates with hippocampal and prefrontal microstructure. Neurolmage, 2017, 149, 415-423.	2.1	66
22	Visual Population Receptive Fields in People with Schizophrenia Have Reduced Inhibitory Surrounds. Journal of Neuroscience, 2017, 37, 1546-1556.	1.7	49
23	The Catsâ€andâ€Dogs test: A tool to identify visuoperceptual deficits in Parkinson's disease. Movement Disorders, 2017, 32, 1789-1790.	2.2	26
24	A new method for mapping perceptual biases across visual space. Journal of Vision, 2017, 17, 5.	0.1	7
25	Heritability of visual perception and cortical architecture. Journal of Vision, 2017, 17, 792.	0.1	0
26	The topographic representation of global object perception in human visual cortex. Journal of Vision, 2017, 17, 747.	0.1	1
27	Induction of Kanizsa Contours Requires Awareness of the Inducing Context. PLoS ONE, 2016, 11, e0161177.	1.1	19
28	Perception and Processing of Faces in the Human Brain Is Tuned to Typical Feature Locations. Journal of Neuroscience, 2016, 36, 9289-9302.	1.7	58
29	Intersession reliability of population receptive field estimates. Neurolmage, 2016, 143, 293-303.	2.1	58
30	Cortical idiosyncrasies predict the perception of object size. Nature Communications, 2016, 7, 12110.	5.8	77
31	Attention and multisensory modulation argue against total encapsulation. Behavioral and Brain Sciences, 2016, 39, e237.	0.4	1
32	Gamma Frequency and the Spatial Tuning of Primary Visual Cortex. PLoS ONE, 2016, 11, e0157374.	1.1	6
33	Unexpected arousal modulates the influence of sensory noise on confidence. ELife, 2016, 5, .	2.8	138
34	Comparing different stimulus configurations for population receptive field mapping in human fMRI. Frontiers in Human Neuroscience, 2015, 9, 96.	1.0	58
35	Where Is Size in the Brain of the Beholder?. Multisensory Research, 2015, 28, 285-296.	0.6	11
36	Neural Population Tuning Links Visual Cortical Anatomy to Human Visual Perception. Neuron, 2015, 85, 641-656.	3.8	94

#	Article	IF	CITATIONS
37	Dissociable Processes for Orientation Discrimination Learning and Contextual Illusion Magnitude. PLoS ONE, 2014, 9, e103121.	1.1	1
38	We should have seen this coming. Frontiers in Human Neuroscience, 2014, 8, 332.	1.0	13
39	Larger Extrastriate Population Receptive Fields in Autism Spectrum Disorders. Journal of Neuroscience, 2014, 34, 2713-2724.	1.7	115
40	Variability in visual cortex size reflects tradeoff between local orientation sensitivity and global orientation modulation. Nature Communications, 2013, 4, 2201.	5.8	60
41	Direct evidence for encoding of motion streaks in human visual cortex. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20122339.	1.2	32
42	Subjective Size Perception Depends on Central Visual Cortical Magnification in Human V1. PLoS ONE, 2013, 8, e60550.	1.1	75
43	Exploring the parahippocampal cortex response to high and low spatial frequency spaces. NeuroReport, 2012, 23, 503-507.	0.6	38
44	The Frequency of Visually Induced Gamma-Band Oscillations Depends on the Size of Early Human Visual Cortex. Journal of Neuroscience, 2012, 32, 1507-1512.	1.7	64
45	Better Ways to Improve Standards in Brain-Behavior Correlation Analysis. Frontiers in Human Neuroscience, 2012, 6, 200.	1.0	82
46	Decoding of coherent but not incoherent motion signals in early dorsal visual cortex. NeuroImage, 2011, 56, 688-698.	2.1	7
47	Relating inter-individual differences in metacognitive performance on different perceptual tasks. Consciousness and Cognition, 2011, 20, 1787-1792.	0.8	128
48	The surface area of human V1 predicts the subjective experience of object size. Nature Neuroscience, $2011, 14, 28-30.$	7.1	263
49	Interocular induction of illusory size perception. BMC Neuroscience, 2011, 12, 27.	0.8	47
50	Pattern classification using functional magnetic resonance imaging. Wiley Interdisciplinary Reviews: Cognitive Science, 2011, 2, 568-579.	1.4	12
51	Contextual Illusions Reveal the Limit of Unconscious Visual Processing. Psychological Science, 2011, 22, 399-405.	1.8	74
52	Protection against deprivation amblyopia depends on relative not absolute daily binocular exposure. Journal of Vision, 2011, 11, 13-13.	0.1	18
53	Interpreting local visual features as a global shape requires awareness. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 2207-2215.	1.2	21
54	Stochastic Resonance Effects Reveal the Neural Mechanisms of Transcranial Magnetic Stimulation. Journal of Neuroscience, 2011, 31, 3143-3147.	1.7	156

#	Article	IF	CITATIONS
55	Reciprocal Anatomical Relationship between Primary Sensory and Prefrontal Cortices in the Human Brain. Journal of Neuroscience, 2011, 31, 9472-9480.	1.7	34
56	Investigating object representations during change detection in human extrastriate cortex. European Journal of Neuroscience, 2010, 32, 1780-1787.	1.2	8
57	Investigating representations of facial identity in human ventral visual cortex with transcranial magnetic stimulation. Frontiers in Human Neuroscience, 2010, 4, 50.	1.0	11
58	Knowing with Which Eye We See: Utrocular Discrimination and Eye-Specific Signals in Human Visual Cortex. PLoS ONE, 2010, 5, e13775.	1.1	30
59	Brain Activity to Rely On?. Science, 2010, 327, 43-44.	6.0	6
60	Daily mixed visual experience that prevents amblyopia in cats does not always allow the development of good binocular depth perception. Journal of Vision, 2009, 9, 22-22.	0.1	19
61	Flexible Learning of Natural Statistics in the Human Brain. Journal of Neurophysiology, 2009, 102, 1854-1867.	0.9	20
62	Experience Shapes the Utility of Natural Statistics for Perceptual Contour Integration. Current Biology, 2008, 18, 1162-1167.	1.8	20
63	Brief daily binocular vision prevents monocular deprivation effects in visual cortex. European Journal of Neuroscience, 2007, 25, 270-280.	1.2	37
64	Monocular deprivation reduces reliability of visual cortical responses to binocular disparity stimuli. European Journal of Neuroscience, 2007, 26, 3553-3563.	1,2	13