Jorge S Dolado

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8945777/publications.pdf Version: 2024-02-01

LORCE S DOLADO

#	Article	IF	CITATIONS
1	A patchy particle model for C-S-H formation. Cement and Concrete Research, 2022, 152, 106658.	11.0	8
2	Geopolymer Concrete Performance Study for High-Temperature Thermal Energy Storage (TES) Applications. Sustainability, 2022, 14, 1937.	3.2	20
3	Sub- and supercritical hydrothermal route for the synthesis of xonotlite nanofibers for application to green concrete materials. Journal of Supercritical Fluids, 2022, 184, 105583.	3.2	4
4	New Kinetic Monte Carlo Model to Study the Dissolution of Quartz. ACS Earth and Space Chemistry, 2021, 5, 516-524.	2.7	12
5	Normal and anomalous self-healing mechanism of crystalline calcium silicate hydrates. Cement and Concrete Research, 2021, 142, 106356.	11.0	15
6	A dissolution model of alite coupling surface topography and ions transport under different hydrodynamics conditions at microscale. Cement and Concrete Research, 2021, 142, 106377.	11.0	6
7	Correlation between the Dynamics of Nanoconfined Water and the Local Chemical Environment in Calcium Silicate Hydrate Nanominerals. Chemistry - A European Journal, 2021, 27, 11238-11238.	3.3	0
8	Correlation between the Dynamics of Nanoconfined Water and the Local Chemical Environment in Calcium Silicate Hydrate Nanominerals. Chemistry - A European Journal, 2021, 27, 11309-11318.	3.3	4
9	Molecular dynamics and experimental study on the adhesion mechanism of polyvinyl alcohol (PVA) fiber in alkali-activated slag/fly ash. Cement and Concrete Research, 2021, 145, 106452.	11.0	43
10	Interactions between Reduced Graphene Oxide with Monomers of (Calcium) Silicate Hydrates: A First-Principles Study. Nanomaterials, 2021, 11, 2248.	4.1	23
11	THz Fingerprints of Cement-Based Materials. Materials, 2020, 13, 4194.	2.9	9
12	KIMERA: A Kinetic Montecarlo Code for Mineral Dissolution. Minerals (Basel, Switzerland), 2020, 10, 825.	2.0	18
13	Elucidation of Conduction Mechanism in Graphene Nanoplatelets (GNPs)/Cement Composite Using Dielectric Spectroscopy. Materials, 2020, 13, 275.	2.9	15
14	Mechanisms and Dynamics of Mineral Dissolution: A New Kinetic Monte Carlo Model. Advanced Theory and Simulations, 2019, 2, 1900114.	2.8	18
15	Modelling and control of the microstructure of comb-like poly(MAA- <i>co</i> -PEGMA) water-soluble copolymers. Polymer Chemistry, 2019, 10, 1000-1009.	3.9	5
16	First-Principles Calculations on Polymorphs of Dicalcium Silicate—Belite, a Main Component of Portland Cement. Journal of Physical Chemistry C, 2019, 123, 6768-6777.	3.1	17
17	Tracing Polymerization in Calcium Silicate Hydrates Using Si Isotopic Fractionation. Journal of Physical Chemistry C, 2018, 122, 8356-8363.	3.1	6
18	A multi-scale approach for percolation transition and its application to cement setting. Scientific Reports, 2018, 8, 15830.	3.3	13

JORGE S DOLADO

#	Article	IF	CITATIONS
19	Doping as a Way To Protect Silicate Chains in Calcium Silicate Hydrates. ACS Sustainable Chemistry and Engineering, 2018, 6, 15015-15021.	6.7	20
20	Benchmark of ReaxFF force field for subcritical and supercritical water. Journal of Chemical Physics, 2018, 148, 234503.	3.0	34
21	Supercritical hydrothermal flow synthesis of xonotlite nanofibers. Journal of Flow Chemistry, 2018, 8, 89-95.	1.9	11
22	Ultraâ€Fast Supercritical Hydrothermal Synthesis of Tobermorite under Thermodynamically Metastable Conditions. Angewandte Chemie - International Edition, 2017, 56, 3162-3167.	13.8	13
23	Ultraâ€Fast Supercritical Hydrothermal Synthesis of Tobermorite under Thermodynamically Metastable Conditions. Angewandte Chemie, 2017, 129, 3210-3215.	2.0	13
24	Quantum Nuclear Dynamics of Protons within Layered Hydroxides at High Pressure. Scientific Reports, 2017, 7, 4842.	3.3	6
25	Effect of Nano Seeds in C-S-H Gel Formation: Simulation Study from the Colloidal Point of View. , 2015, , .		4
26	Structural and Dynamical Studies of C-S-H Gel Synthesized with Nano-Silica Particles and Amine Functionalized Silica Nanoparticles. , 2015, , .		0
27	Effect of addition of silica- and amine functionalized silica-nanoparticles on the microstructure of calcium silicate hydrate (C–S–H) gel. Journal of Colloid and Interface Science, 2015, 450, 109-118.	9.4	66
28	Effect of Chemical Environment on the Dynamics of Water Confined in Calcium Silicate Minerals: Natural and Synthetic Tobermorite. Langmuir, 2015, 31, 4964-4972.	3.5	14
29	Brownian cluster dynamics with short range patchy interactions: Its application to polymers and step-growth polymerization. Journal of Chemical Physics, 2014, 141, 024904.	3.0	11
30	C-A-S-H gels formed in alkali-activated slag cement pastes. Structure and effect on cement properties and durability. MATEC Web of Conferences, 2014, 11, 01002.	0.2	7
31	3D Computational Simulation of Calcium Leaching in Cement Matrices. Materiales De Construccion, 2014, 64, e035.	0.7	3
32	²⁹ Si Chemical Shift Anisotropies in Hydrated Calcium Silicates: A Computational Study. Journal of Physical Chemistry C, 2013, 117, 8374-8380.	3.1	12
33	Cause of the fragile-to-strong transition observed in water confined in C-S-H gel. Journal of Chemical Physics, 2013, 139, 164714.	3.0	23
34	Nanoscale texture development of C-S-H gel: A computational model for nucleation and growth. Applied Physics Letters, 2013, 103, .	3.3	30
35	Ettringite Strengthening at High Pressures Induced by the Densification of the Hydrogen Bond Network. Journal of Physical Chemistry C, 2012, 116, 16138-16143.	3.1	32
36	Do Cement Nanotubes exist?. Advanced Materials, 2012, 24, 3239-3245.	21.0	51

JORGE S DOLADO

#	Article	IF	CITATIONS
37	²⁹ Si NMR in Cement: A Theoretical Study on Calcium Silicate Hydrates. Journal of Physical Chemistry C, 2012, 116, 9755-9761.	3.1	84
38	The nano-branched structure of cementitious calcium–silicate–hydrate gel. Journal of Materials Chemistry, 2011, 21, 4445.	6.7	69
39	Synergy of T1-C3S and β-C2S Hydration Reactions. Journal of the American Ceramic Society, 2011, 94, 1265-1271.	3.8	5
40	A model for the C-A-S-H gel formed in alkali-activated slag cements. Journal of the European Ceramic Society, 2011, 31, 2043-2056.	5.7	589
41	Modeling and simulation of cement hydration kinetics and microstructure development. Cement and Concrete Research, 2011, 41, 1257-1278.	11.0	328
42	Recent advances in modeling for cementitious materials. Cement and Concrete Research, 2011, 41, 711-726.	11.0	106
43	Effect of hydration on the dielectric properties of C-S-H gel. Journal of Chemical Physics, 2011, 134, 034509.	3.0	49
44	Caracterización textural y mecánica de geles C-S-H formados en la hidratación de muestras sintéticas T1-C ₃ S, β-C ₂ S y sus mezclas. Materiales De Construccion, 2011, 61, 169-183.	0.7	8
45	Nanotechnology and Concrete. Transportation Research Record, 2010, 2142, 127-129.	1.9	8
46	Quantitative study of hydration of C3S and C2S by thermal analysis. Journal of Thermal Analysis and Calorimetry, 2010, 102, 965-973.	3.6	57
47	Comments on "A High-Gain Antenna Consisting of Two Slot Elements With a Space Larger Than a Wavelength― IEEE Antennas and Wireless Propagation Letters, 2010, 9, 1279-1280.	4.0	1
48	Modelos estructurales del empaquetamiento aleatorio de partÃculas esféricas de Tobermorita: una aproximación computacional sencilla. Materiales De Construccion, 2010, 60, 7-15.	0.7	12
49	Espectros de rayos X y propiedades elásticas teóricas de los silicatos cálcicos hidratados cristalinos: comparación con los geles de cemento. Materiales De Construccion, 2010, 60, 7-19.	0.7	23
50	Structural, Mechanical, and Reactivity Properties of Tricalcium Aluminate Using Firstâ€Principles Calculations. Journal of the American Ceramic Society, 2009, 92, 897-902.	3.8	74
51	Elastic properties of the main species present in Portland cement pastes. Acta Materialia, 2009, 57, 1666-1674.	7.9	214
52	Aluminum Incorporation to Dreierketten Silicate Chains. Journal of Physical Chemistry B, 2009, 113, 2832-2839.	2.6	65
53	A molecular dynamics study of the aluminosilicate chains structure in Alâ€rich calcium silicate hydrated (C–S–H) gels. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 1324-1329.	1.8	64
54	Comment on "A waveguide slit array antenna fabricated with subwavelength periodic grooves Appl. Phys. Lett. 91, 143512 (2007)― Applied Physics Letters, 2008, 93, 156101.	3.3	4

Jorge S Dolado

#	Article	IF	CITATIONS
55	Very Low Profile and Dielectric Loaded Feeder Antenna. IEEE Antennas and Wireless Propagation Letters, 2007, 6, 544-548.	4.0	32
56	Silicate chain formation in the nanostructure of cement-based materials. Journal of Chemical Physics, 2007, 127, 164710.	3.0	59
57	Mechanical properties of crystalline calcium-silicate-hydrates: comparison with cementitious C-S-H gels. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 1775-1780.	1.8	125
58	A Molecular Dynamic Study of Cementitious Calcium Silicate Hydrate (C?S?H) Gels. Journal of the American Ceramic Society, 2007, 90, 070915225431002-???.	3.8	63
59	Effect of Nanosilica Additions on Belite Cement Pastes Held in Sulfate Solutions. Journal of the American Ceramic Society, 2007, 90, 070916231959005-???.	3.8	7
60	Improvement of initial mechanical strength by nanoalumina in belite cements. Materials Letters, 2007, 61, 1889-1892.	2.6	124
61	On the formation of cementitious C–S–H nanoparticles. Journal of Computer-Aided Materials Design, 2007, 14, 45-51.	0.7	43
62	Site and lattice resonances in metallic hole arrays. Optics Express, 2006, 14, 7.	3.4	83
63	Dual-Band Low-Profile Corrugated Feeder Antenna. IEEE Transactions on Antennas and Propagation, 2006, 54, 340-350.	5.1	72
64	EFFECTS OF NANOSILICA ADDITIONS ON CEMENT PASTES. , 2005, , 87-96.		24
65	Microstructure and Mechanical Performance of Belite Cements from High Calcium Coal Fly Ash. Journal of the American Ceramic Society, 2005, 88, 1845-1853.	3.8	28
66	Subwavelength slotted corrugated plate with enhanced quasioptical millimeter wave transmission. IEEE Microwave and Wireless Components Letters, 2005, 15, 286-288.	3.2	19
67	Enhanced millimeter wave transmission through quasioptical subwavelength perforated plates. IEEE Transactions on Antennas and Propagation, 2005, 53, 1897-1903.	5.1	87
68	Increase of the transmission in cut-off metallic hole arrays. IEEE Microwave and Wireless Components Letters, 2005, 15, 116-118.	3.2	38
69	Very low-profile "Bull's Eye" feeder antenna. IEEE Antennas and Wireless Propagation Letters, 2005, 4, 365-368.	4.0	97
70	Low-profile corrugated feeder antenna. IEEE Antennas and Wireless Propagation Letters, 2005, 4, 378-380.	4.0	31
71	Enhanced microwave transmission and beaming using a subwavelength slot in corrugated plate. IEEE Antennas and Wireless Propagation Letters, 2004, 3, 328-331.	4.0	55
72	Enhanced millimeter-wave transmission through subwavelength hole arrays. Optics Letters, 2004, 29, 2500.	3.3	175

JORGE S DOLADO

#	Article	IF	CITATIONS
73	Lifetimes and mean-free paths of hot electrons in the alkali metals. Physical Review B, 2001, 64, .	3.2	16
74	Plasmonic excitations in noble metals: The case of Ag. Physical Review B, 2000, 61, 8033-8042.	3.2	61
75	Energy loss of Ni ions transmitted through C foils at MeV energies: a charge state approach. Nuclear Instruments & Methods in Physics Research B, 1998, 146, 101-105.	1.4	3
76	Enhanced Microwave Transmission Using a Subwavelength Slot in Corrugated Plate. , 0, , .		3
77	Phase response of cut-off metallic hole arrays. , 0, , .		0