Alberto Finamore

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/894566/publications.pdf

Version: 2024-02-01

37 papers

2,147 citations

304602 22 h-index 35 g-index

37 all docs

37 docs citations

37 times ranked

3122 citing authors

#	Article	IF	CITATIONS
1	Sportsmen's Attitude towards Dietary Supplements and Nutrition Knowledge: An Investigation in Selected Roman Area Gyms. Nutrients, 2022, 14, 945.	1.7	10
2	Galactooligosaccharide Treatment Alleviates DSS-Induced Colonic Inflammation in Caco-2 Cell Model. Frontiers in Nutrition, 2022, 9, 862974.	1.6	5
3	Salivary Stress/Immunological Markers in Crohn's Disease and Ulcerative Colitis. International Journal of Molecular Sciences, 2020, 21, 8562.	1.8	17
4	A Comprehensive Evaluation of the Impact of Bovine Milk Containing Different Beta-Casein Profiles on Gut Health of Ageing Mice. Nutrients, 2020, 12, 2147.	1.7	28
5	Use of Synbiotics for Ulcerative Colitis Treatment. Current Clinical Pharmacology, 2020, 15, 174-182.	0.2	21
6	Bread for the Aging Population: The Effect of a Functional Wheat–Lentil Bread on the Immune Function of Aged Mice. Foods, 2019, 8, 510.	1.9	7
7	Supplementation with Bifidobacterium longum Bar33 and Lactobacillus helveticus Bar13 mixture improves immunity in elderly humans (over 75 years) and aged mice. Nutrition, 2019, 63-64, 184-192.	1.1	41
8	Beneficial effects of a selected probiotic mixture administered to high fat-fed mice before and after the development of obesity. Journal of Functional Foods, 2018, 45, 321-329.	1.6	28
9	Redox Role of Lactobacillus casei Shirota Against the Cellular Damage Induced by 2,2′-Azobis (2-Amidinopropane) Dihydrochloride-Induced Oxidative and Inflammatory Stress in Enterocytes-Like Epithelial Cells. Frontiers in Immunology, 2018, 9, 1131.	2.2	30
10	Bioactivity Improvement of Olea europaea Leaf Extract Biotransformed by Wickerhamomyces anomalus Enzymes. Plant Foods for Human Nutrition, 2017, 72, 211-218.	1.4	9
11	Antioxidant, Immunomodulating, and Microbial-Modulating Activities of the Sustainable and Ecofriendly <i>Spirulina</i> . Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-14.	1.9	141
12	Impact of supplementation with a food-derived microbial community on obesity-associated inflammation and gut microbiota composition. Genes and Nutrition, 2017, 12, 25.	1.2	26
13	Differential protection by cell wall components of Lactobacillus amylovorus DSM 16698Tagainst alterations of membrane barrier and NF-kB activation induced by enterotoxigenic F4+ Escherichia coli on intestinal cells. BMC Microbiology, 2016, 16, 226.	1.3	18
14	Synbiotics. , 2016, , 567-574.		3
15	Lactobacillus amylovorus Inhibits the TLR4 Inflammatory Signaling Triggered by Enterotoxigenic Escherichia coli via Modulation of the Negative Regulators and Involvement of TLR2 in Intestinal Caco-2 Cells and Pig Explants. PLoS ONE, 2014, 9, e94891.	1.1	123
16	Application of NMR-based Metabolomics to the Study of Gut Microbiota in Obesity. Journal of Clinical Gastroenterology, 2014, 48, S5-S7.	1.1	20
17	Fecal and urinary NMR-based metabolomics unveil an aging signature in mice. Experimental Gerontology, 2014, 49, 5-11.	1.2	62
18	Lactobacillus acidophilus La5 and Bifidobacterium lactis Bb12 Induce Different Age-Related Metabolic Profiles Revealed by 1H-NMR Spectroscopy in Urine and Feces of Mice. Journal of Nutrition, 2013, 143, 1549-1557.	1.3	29

#	Article	IF	CITATIONS
19	Lactobacillus rhamnosus GG and Bifidobacterium animalis MB5 Induce Intestinal but Not Systemic Antigen-Specific Hyporesponsiveness in Ovalbumin-Immunized Rats. Journal of Nutrition, 2012, 142, 375-381.	1.3	45
20	Absorption of Aminoethyl Cysteine Ketimine Decarboxylated Dimer in Mice: Effect on Plasma Antioxidant Potential. Journal of Agricultural and Food Chemistry, 2012, 60, 4596-4602.	2.4	3
21	Impact of organic and conventional carrots on intestinal and peripheral immunity. Journal of the Science of Food and Agriculture, 2012, 92, 2913-2922.	1.7	13
22	Isolation and Characterization of Circulating Tissue Transglutaminase-Specific T Cells in Coeliac Disease. International Journal of Immunopathology and Pharmacology, 2010, 23, 179-191.	1.0	16
23	Prevention of TNBS-induced colitis by different Lactobacillus and Bifidobacterium strains is associated with an expansion of $\hat{I}^3\hat{I}$ and regulatory T cells of intestinal intraepithelial lymphocytes. Inflammatory Bowel Diseases, 2009, 15, 1526-1536.	0.9	100
24	Alterations of immune function and gut microbiota with ageing. Can probiotic supplementation counteract these changes?. Food Science and Technology Bulletin, 2009, 6, 51-59.	0.5	0
25	Intestinal and Peripheral Immune Response to MON810 Maize Ingestion in Weaning and Old Mice. Journal of Agricultural and Food Chemistry, 2008, 56, 11533-11539.	2.4	79
26	Zinc Deficiency Induces Membrane Barrier Damage and Increases Neutrophil Transmigration in Caco-2 Cells1,. Journal of Nutrition, 2008, 138, 1664-1670.	1.3	150
27	The Novel Porcine Lactobacillus sobrius Strain Protects Intestinal Cells from Enterotoxigenic Escherichia coli K88 Infection and Prevents Membrane Barrier Damage ,. Journal of Nutrition, 2007, 137, 2709-2716.	1.3	143
28	Probiotic bacteriaBifidobacterium animalisMB5 andLactobacillus rhamnosusGG protect intestinal Caco-2 cells from the inflammation-associated response induced by enterotoxigenicEscherichia coliK88. British Journal of Nutrition, 2006, 95, 1177-1184.	1.2	171
29	Regulation of immune response at intestinal and peripheral sites by probiotics. Biologia (Poland), 2006, 61, 735-740.	0.8	11
30	Altered Expression, Localization, and Phosphorylation of Epithelial Junctional Proteins in Celiac Disease. American Journal of Clinical Pathology, 2006, 125, 502-511.	0.4	86
31	Altered Expression, Localization, and Phosphorylation of Epithelial Junctional Proteins in Celiac Disease. American Journal of Clinical Pathology, 2006, 125, 502-511.	0.4	66
32	Immune response in relation to zinc status, sex and antioxidant defence in Italian elderly population: the ZENITH study. European Journal of Clinical Nutrition, 2005, 59, S68-S72.	1.3	14
33	Alternatives to in-feed antibiotics in pigs: Evaluation of probiotics, zinc or organic acids as protective agents for the intestinal mucosa. A comparison of in vitro and in vivo results. Animal Research, 2005, 54, 203-218.	0.6	71
34	Novel Approach for Food Safety Evaluation. Results of a Pilot Experiment To Evaluate Organic and Conventional Foods. Journal of Agricultural and Food Chemistry, 2004, 52, 7425-7431.	2.4	48
35	Spray-dried plasma improves growth performance and reduces inflammatory status of weaned pigs challenged with enterotoxigenic Escherichia coli K881. Journal of Animal Science, 2004, 82, 1764-1772.	0.2	185
36	Zinc Oxide Protects Cultured Enterocytes from the Damage Induced by Escherichia coli. Journal of Nutrition, 2003, 133, 4077-4082.	1.3	302

Alberto Finamore

#	Article	IF	CITATIONS
37	Zinc Deficiency Suppresses the Development of Oral Tolerance in Rats. Journal of Nutrition, 2003, 133, 191-198.	1.3	26