Veronica J Santos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8944832/publications.pdf Version: 2024-02-01

		687363	552781
32	1,468	13	26
papers	citations	h-index	g-index
32	32	32	1799
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Autonomous Learning of Page Flipping Movements via Tactile Feedback. IEEE Transactions on Robotics, 2022, 38, 2734-2749.	10.3	2
2	Elastohydrodynamic friction of robotic and human fingers on soft micropatterned substrates. Nature Materials, 2021, 20, 1707-1711.	27.5	33
3	Tactile Perception for Teleoperated Robotic Exploration within Granular Media. ACM Transactions on Human-Robot Interaction, 2021, 10, 1-27.	4.1	3
4	Toward Shared Autonomy Control Schemes for Human-Robot Systems: Action Primitive Recognition Using Eye Gaze Features. Frontiers in Neurorobotics, 2020, 14, 567571.	2.8	9
5	Perception of Tactile Directionality via Artificial Fingerpad Deformation and Convolutional Neural Networks. IEEE Transactions on Haptics, 2020, 13, 831-839.	2.7	4
6	Scalable fabric tactile sensor arrays for soft bodies. Journal of Micromechanics and Microengineering, 2018, 28, 064004.	2.6	12
7	Measuring Dynamic Shear Force and Vibration With a Bioinspired Tactile Sensor Skin. IEEE Sensors Journal, 2018, 18, 3544-3553.	4.7	28
8	Functional Contour-following via Haptic Perception and Reinforcement Learning. IEEE Transactions on Haptics, 2018, 11, 61-72.	2.7	32
9	Exploiting Three-Dimensional Gaze Tracking for Action Recognition During Bimanual Manipulation to Enhance Human–Robot Collaboration. Frontiers in Robotics and Al, 2018, 5, 25.	3.2	17
10	Medical robotics—Regulatory, ethical, and legal considerations for increasing levels of autonomy. Science Robotics, 2017, 2, .	17.6	349
11	Bioinspired flexible microfluidic shear force sensor skin. Sensors and Actuators A: Physical, 2017, 264, 289-297.	4.1	62
12	Surgical Hand Tracking in Open Surgery Using a Versatile Motion Sensing System: Are We There Yet?. American Surgeon, 2016, 82, 872-875.	0.8	14
13	Discriminability of Single and Multichannel Intracortical Microstimulation within Somatosensory Cortex. Frontiers in Bioengineering and Biotechnology, 2016, 4, 91.	4.1	3
14	A Robot Hand Testbed Designed for Enhancing Embodiment and Functional Neurorehabilitation of Body Schema in Subjects with Upper Limb Impairment or Loss. Frontiers in Human Neuroscience, 2015, 9, 26.	2.0	26
15	Independent digit contributions to rotational manipulation in a three-digit pouring task requiring dynamic stability. Experimental Brain Research, 2015, 233, 2195-2204.	1.5	3
16	Spatial Asymmetry in Tactile Sensor Skin Deformation Aids Perception of Edge Orientation During Haptic Exploration. IEEE Transactions on Haptics, 2014, 7, 191-202.	2.7	14
17	Haptic exploration of fingertip-sized geometric features using a multimodal tactile sensor. Proceedings of SPIE, 2014, , .	0.8	5
18	[D78] Tendon-driven testbed for haptic exploration and sensory event-driven grasp and manipulation. , 2014, , .		1

2

VERONICA J SANTOS

#	Article	IF	CITATIONS
19	Human Grip Responses to Perturbations of Objects During Precision Grip. Springer Tracts in Advanced Robotics, 2014, , 159-188.	0.4	4
20	Precision grip responses to unexpected rotational perturbations scale with axis of rotation. Journal of Biomechanics, 2013, 46, 1098-1103.	2.1	9
21	Design of a back-driveable actuation system for modular control of tendon-driven robot hands. , 2012, , .		0
22	Interactions Between Tactile and Proprioceptive Representations in Haptics. Journal of Motor Behavior, 2012, 44, 391-401.	0.9	9
23	Flexible microfluidic normal force sensor skin for tactile feedback. Sensors and Actuators A: Physical, 2012, 179, 62-69.	4.1	231
24	Maximal Voluntary Fingertip Force Production Is Not Limited by Movement Speed in Combined Motion and Force Tasks. Journal of Neuroscience, 2009, 29, 8784-8789.	3.6	29
25	Improving the Fitness of High-Dimensional Biomechanical Models via Data-Driven Stochastic Exploration. IEEE Transactions on Biomedical Engineering, 2009, 56, 552-564.	4.2	12
26	Deformable skin design to enhance response of a biomimetic tactile sensor. , 2008, , .		20
27	A robust micro-vibration sensor for biomimetic fingertips. , 2008, , .		64
28	Biomimetic Tactile Sensor Array. Advanced Robotics, 2008, 22, 829-849.	1.8	305
29	Biomimetic Tactile Sensor for Control of Grip. , 2007, , .		15
30	Reported Anatomical Variability Naturally Leads to Multimodal Distributions of Denavit-Hartenberg Parameters for the Human Thumb. IEEE Transactions on Biomedical Engineering, 2006, 53, 155-163.	4.2	94
31	From robotic hands to human hands: a visualization and simulation engine for grasping research. Industrial Robot, 2005, 32, 55-63.	2.1	54
32	A Bayesian approach to biomechanical modeling to optimize over large parameter spaces while		5

A Bayesian approach to biomechanical modeling to optim considering anatomical variability. , 2004, 2004, 4626-9.

3