
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8944664/publications.pdf Version: 2024-02-01

ΡΑΙΙΙΟ ΒΑΡΤΟΙΟ

#	Article	IF	CITATIONS
1	Additive manufacturing of tissues and organs. Progress in Polymer Science, 2012, 37, 1079-1104.	11.8	997
2	Development of novel alginate based hydrogel films for wound healing applications. International Journal of Biological Macromolecules, 2013, 52, 221-230.	3.6	325
3	Traditional Therapies for Skin Wound Healing. Advances in Wound Care, 2016, 5, 208-229.	2.6	323
4	Biomedical production of implants by additive electro-chemical and physical processes. CIRP Annals - Manufacturing Technology, 2012, 61, 635-655.	1.7	255
5	Advanced biofabrication strategies for skin regeneration and repair. Nanomedicine, 2013, 8, 603-621.	1.7	247
6	Enhancing the Hydrophilicity and Cell Attachment of 3D Printed PCL/Graphene Scaffolds for Bone Tissue Engineering. Materials, 2016, 9, 992.	1.3	230
7	Preparation and Characterization of Films Based on Alginate and Aloe Vera. International Journal of Polymer Analysis and Characterization, 2011, 16, 449-464.	0.9	165
8	Robot assisted additive manufacturing: A review. Robotics and Computer-Integrated Manufacturing, 2019, 59, 335-345.	6.1	165
9	3D bioprinting of photocrosslinkable hydrogel constructs. Journal of Applied Polymer Science, 2015, 132, .	1.3	160
10	Improved osteoblast cell affinity on plasma-modified 3-D extruded PCL scaffolds. Acta Biomaterialia, 2013, 9, 5997-6005.	4.1	156
11	Recent Advances in Enzymatic and Non-Enzymatic Electrochemical Glucose Sensing. Sensors, 2021, 21, 4672.	2.1	148
12	Effect of process parameters on the morphological and mechanical properties of 3D Bioextruded poly(εâ€caprolactone) scaffolds. Rapid Prototyping Journal, 2012, 18, 56-67.	1.6	138
13	Characterisation of PCL and PCL/PLA Scaffolds for Tissue Engineering. Procedia CIRP, 2013, 5, 110-114.	1.0	133
14	Cell-instructive pectin hydrogels crosslinked via thiol-norbornene photo-click chemistry for skin tissue engineering. Acta Biomaterialia, 2018, 66, 282-293.	4.1	133
15	Biomanufacturing for tissue engineering: Present and future trends. Virtual and Physical Prototyping, 2009, 4, 203-216.	5.3	129
16	Polymer-Ceramic Composite Scaffolds: The Effect of Hydroxyapatite and β-tri-Calcium Phosphate. Materials, 2018, 11, 129.	1.3	121
17	Thermal Stability of PCL/PLA Blends Produced by Physical Blending Process. Procedia Engineering, 2013, 59, 292-297.	1.2	120
18	Alginate/Aloe Vera Hydrogel Films for Biomedical Applications. Procedia CIRP, 2013, 5, 210-215.	1.0	105

#	Article	IF	CITATIONS
19	3D Photo-Fabrication for Tissue Engineering and Drug Delivery. Engineering, 2015, 1, 090-112.	3.2	105
20	A single-component hydrogel bioink for bioprinting of bioengineered 3D constructs for dermal tissue engineering. Materials Horizons, 2018, 5, 1100-1111.	6.4	104
21	Engineered 3D printed poly(É›-caprolactone)/graphene scaffolds for bone tissue engineering. Materials Science and Engineering C, 2019, 100, 759-770.	3.8	95
22	Analysis of manufacturing parameters on the shear strength of aluminium adhesive single-lap joints. Journal of Materials Processing Technology, 2010, 210, 610-617.	3.1	93
23	Fabrication and characterisation of 3D printed MWCNT composite porous scaffolds for bone regeneration. Materials Science and Engineering C, 2019, 98, 266-278.	3.8	89
24	Rheological behavior of alginate solutions for biomanufacturing. Journal of Applied Polymer Science, 2009, 113, 3866-3871.	1.3	88
25	3D Printing of Polycaprolactone–Polyaniline Electroactive Scaffolds for Bone Tissue Engineering. Materials, 2020, 13, 512.	1.3	85
26	Three-dimensional printed bone scaffolds: The role of nano/micro-hydroxyapatite particles on the adhesion and differentiation of human mesenchymal stem cells. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2017, 231, 555-564.	1.0	82
27	Virtual topological optimisation of scaffolds for rapid prototyping. Medical Engineering and Physics, 2010, 32, 775-782.	0.8	81
28	Effect of process parameters on the strength of resistance spot welds in 6082-T6 aluminium alloy. Materials & Design, 2010, 31, 2454-2463.	5.1	78
29	Stereoâ€ŧhermalâ€ŀithography: a new principle for rapid prototyping. Rapid Prototyping Journal, 2003, 9, 150-156.	1.6	74
30	Advances in bioprinted cell-laden hydrogels for skin tissue engineering. Biomanufacturing Reviews, 2017, 2, 1.	4.8	72
31	Design of tissue engineering scaffolds based on hyperbolic surfaces: Structural numerical evaluation. Medical Engineering and Physics, 2014, 36, 1033-1040.	0.8	71
32	Aligned multi-walled carbon nanotubes with nanohydroxyapatite in a 3D printed polycaprolactone scaffold stimulates osteogenic differentiation. Materials Science and Engineering C, 2020, 108, 110374.	3.8	70
33	Structural Evolution of PCL during Melt Extrusion 3D Printing. Macromolecular Materials and Engineering, 2018, 303, 1700494.	1.7	69
34	Metal filled resin for stereolithography metal part. CIRP Annals - Manufacturing Technology, 2008, 57, 235-238.	1.7	68
35	3D printing of silk microparticle reinforced polycaprolactone scaffolds for tissue engineering applications. Materials Science and Engineering C, 2021, 118, 111433.	3.8	66
36	Influence of Aloe vera on water absorption and enzymatic in vitro degradation of alginate hydrogel films. Carbohydrate Polymers, 2013, 98, 311-320.	5.1	63

#	Article	IF	CITATIONS
37	Topology Optimization to Reduce the Stress Shielding Effect for Orthopedic Applications. Procedia CIRP, 2017, 65, 202-206.	1.0	60
38	Collagen surface modified poly(ε-caprolactone) scaffolds with improved hydrophilicity and cell adhesion properties. Materials Letters, 2014, 134, 263-267.	1.3	58
39	BioCell Printing : Integrated automated assembly system for tissue engineering constructs. CIRP Annals - Manufacturing Technology, 2011, 60, 271-274.	1.7	57
40	Dual-Scale Polymeric Constructs as Scaffolds for Tissue Engineering. Materials, 2011, 4, 527-542.	1.3	57
41	Micro additive manufacturing using ultra short laser pulses. CIRP Annals - Manufacturing Technology, 2015, 64, 701-724.	1.7	55
42	Cell Therapy with Human MSCs Isolated from the Umbilical Cord Wharton Jelly Associated to a PVA Membrane in the Treatment of Chronic Skin Wounds. International Journal of Medical Sciences, 2014, 11, 979-987.	1.1	53
43	Assessment of PCL/carbon material scaffolds for bone regeneration. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 93, 52-60.	1.5	53
44	Bone Tissue Engineering: 3D PCL-based Nanocomposite Scaffolds with Tailored Properties. Procedia CIRP, 2016, 49, 51-54.	1.0	52
45	Study on the fatigue strength of AA 6082-T6 adhesive lap joints. International Journal of Adhesion and Adhesives, 2009, 29, 633-638.	1.4	51
46	Melt electrospinning writing of threeâ€dimensional star poly(ϵâ€caprolactone) scaffolds. Polymer International, 2013, 62, 893-900.	1.6	51
47	Engineering the vasculature with additive manufacturing. Current Opinion in Biomedical Engineering, 2017, 2, 1-13.	1.8	46
48	Three-Dimensional Printing and Electrospinning Dual-Scale Polycaprolactone Scaffolds with Low-Density and Oriented Fibers to Promote Cell Alignment. 3D Printing and Additive Manufacturing, 2020, 7, 105-113.	1.4	46
49	In vivo study of conductive 3D printed PCL/MWCNTs scaffolds with electrical stimulation for bone tissue engineering. Bio-Design and Manufacturing, 2021, 4, 190-202.	3.9	46
50	Biomanufacturing. CIRP Annals - Manufacturing Technology, 2013, 62, 585-606.	1.7	45
51	A review of additive manufacturing for ceramic production. Rapid Prototyping Journal, 2017, 23, 954-963.	1.6	40
52	Engineered dual-scale poly (ε-caprolactone) scaffolds using 3D printing and rotational electrospinning for bone tissue regeneration. Additive Manufacturing, 2020, 36, 101452.	1.7	38
53	Investigating the Effect of Carbon Nanomaterials Reinforcing Poly(Îμ-Caprolactone) Printed Scaffolds for Bone Repair Applications. International Journal of Bioprinting, 2020, 6, 266.	1.7	37
54	PCL Scaffolds with Collagen Bioactivator for Applications in Tissue Engineering. Procedia Engineering, 2013, 59, 279-284.	1.2	35

#	Article	IF	CITATIONS
55	Effects of Human Mesenchymal Stem Cells Isolated from Wharton's Jelly of the Umbilical Cord and Conditioned Media on Skeletal Muscle Regeneration Using a Myectomy Model. Stem Cells International, 2014, 2014, 1-16.	1.2	34
56	Hybrid moulds: effect of the moulding blocks on the morphology and dimensional properties. Rapid Prototyping Journal, 2009, 15, 71-82.	1.6	33
57	Additive manufacturing techniques for scaffold-based cartilage tissue engineering. Virtual and Physical Prototyping, 2013, 8, 175-186.	5.3	33
58	3D-Printed Poly(É>-caprolactone)/Graphene Scaffolds Activated with P1-Latex Protein for Bone Regeneration. 3D Printing and Additive Manufacturing, 2018, 5, 127-137.	1.4	33
59	The Potential of Polyethylene Terephthalate Glycol as Biomaterial for Bone Tissue Engineering. Polymers, 2020, 12, 3045.	2.0	33
60	Optimisation of a Novel Spiral-Inducing Bypass Graft Using Computational Fluid Dynamics. Scientific Reports, 2017, 7, 1865.	1.6	32
61	Promoting Nerve Regeneration in a Neurotmesis Rat Wodel Using Poly(DL-lactide- <mmi:math) 0.7<br="" 1="" etqq1="" ij="">Mesenchymal Stem Cells from the Wharton's Jelly:<i>In Vitro</i>and<i>In Vivo</i>Analysis. BioMed</mmi:math)>	0.9	Overlock 10
62	Research international, 2014, 2014, 2014 Biomechanical performance of hybrid electrospun structures for skin regeneration. Materials Science and Engineering C, 2018, 93, 816-827.	3.8	30
63	Development and characterization of a photocurable alginate bioink for three-dimensional bioprinting. International Journal of Bioprinting, 2019, 5, 189.	1.7	30
64	Photo-curing modelling: direct irradiation. International Journal of Advanced Manufacturing Technology, 2007, 32, 480-491.	1.5	29
65	Modeling and simulation of photofabrication processes using unsaturated polyester resins. Journal of Applied Polymer Science, 2009, 114, 3673-3685.	1.3	29
66	3D printing of new biobased unsaturated polyesters by microstereo-thermal-lithography. Biofabrication, 2014, 6, 035024.	3.7	29
67	Electrospun highly porous poly(L-lactic acid)-dopamine-SiO2 fibrous membrane for bone regeneration. Materials Science and Engineering C, 2020, 117, 111359.	3.8	29
68	Laser micromachining for mould manufacturing: I. The influence of operating parameters. Assembly Automation, 2006, 26, 227-234.	1.0	28
69	Cellularized versus decellularized scaffolds for bone regeneration. Materials Letters, 2016, 182, 318-322.	1.3	28
70	Investigation of polycaprolactone for bone tissue engineering scaffolds: In vitro degradation and biological studies. Materials and Design, 2022, 216, 110582.	3.3	28
71	Novel Poly(<i>É></i> -caprolactone)/Graphene Scaffolds for Bone Cancer Treatment and Bone Regeneration. 3D Printing and Additive Manufacturing, 2020, 7, 222-229.	1.4	27
72	Conductive Polymeric-Based Electroactive Scaffolds for Tissue Engineering Applications: Current Progress and Challenges from Biomaterials and Manufacturing Perspectives. International Journal of Molecular Sciences, 2021, 22, 11543.	1.8	27

#	Article	IF	CITATIONS
73	Influence of Hydroxyapatite on Extruded 3D Scaffolds. Procedia Engineering, 2013, 59, 263-269.	1.2	26
74	Sustainability in extrusion-based additive manufacturing technologies. Progress in Additive Manufacturing, 2016, 1, 65-78.	2.5	26
75	A review on the use of additive manufacturing to produce lower limb orthoses. Progress in Additive Manufacturing, 2020, 5, 85-94.	2.5	26
76	Integrated computational tools for virtual and physical automatic construction. Automation in Construction, 2006, 15, 257-271.	4.8	25
77	Processâ€Driven Microstructure Control in Meltâ€Extrusionâ€Based 3D Printing for Tailorable Mechanical Properties in a Polycaprolactone Filament. Macromolecular Materials and Engineering, 2018, 303, 1800173.	1.7	25
78	Topology optimised metallic bone plates produced by electron beam melting: a mechanical and biological study. International Journal of Advanced Manufacturing Technology, 2019, 104, 195-210.	1.5	23
79	A review of physical experimental research in jet electrochemical machining. International Journal of Advanced Manufacturing Technology, 2019, 105, 651-667.	1.5	22
80	Tissue Constructs with Human Adipose-Derived Mesenchymal Stem Cells to Treat Bone Defects in Rats. Materials, 2019, 12, 2268.	1.3	22
81	Biological perspectives and current biofabrication strategies in osteochondral tissue engineering. Biomanufacturing Reviews, 2020, 5, 1.	4.8	22
82	Topological Optimisation of Scaffolds for Tissue Engineering. Procedia Engineering, 2013, 59, 298-306.	1.2	21
83	Advanced Processes to Fabricate Scaffolds for Tissue Engineering. , 2008, , 149-170.		21
84	Morphological Characteristics of Electrospun PCL Meshes – The Influence of Solvent Type and Concentration. Procedia CIRP, 2013, 5, 216-221.	1.0	20
85	Green Synthesis of Silver Nanoparticles Using Extract of Cilembu Sweet Potatoes (Ipomoea batatas L) Tj ETQq1 2021, 26, 2042.	1 0.78431 1.7	4 rgBT /Overl 20
86	A Review on Microcellular Injection Moulding. Materials, 2021, 14, 4209.	1.3	20
87	Novel 3D Bioglass Scaffolds for Bone Tissue Regeneration. Polymers, 2022, 14, 445.	2.0	20
88	Functionally Graded Structures through Building Manufacturing. Advanced Materials Research, 0, 683, 775-778.	0.3	19
89	Stress analysis in a bone fracture fixed with topology-optimised plates. Biomechanics and Modeling in Mechanobiology, 2020, 19, 693-699.	1.4	19
90	Hierarchical and spatial modeling and bio-additive manufacturing of multi-material constructs. CIRP Annals - Manufacturing Technology, 2017, 66, 229-232.	1.7	17

#	Article	IF	CITATIONS
91	Carbon Nanomaterials for Electro-Active Structures: A Review. Polymers, 2020, 12, 2946.	2.0	17
92	In vivo investigation of 3D printed polycaprolactone/graphene electro-active bone scaffolds. Bioprinting, 2021, 24, e00164.	2.9	17
93	Experimental assessment of hybrid mould performance. International Journal of Advanced Manufacturing Technology, 2010, 50, 441-448.	1.5	16
94	Numerical simulations of bioextruded polymer scaffolds for tissue engineering applications. Polymer International, 2013, 62, 1544-1552.	1.6	16
95	Production and Characterisation of PCL/ES Scaffolds for Bone Tissue Engineering. Materials Today: Proceedings, 2015, 2, 208-216.	0.9	16
96	Bioprinting a Multifunctional Bioink to Engineer Clickable 3D Cellular Niches with Tunable Matrix Microenvironmental Cues. Advanced Healthcare Materials, 2021, 10, e2001176.	3.9	16
97	Degradation Behavior of Biopolymer-based Membranes for Skin Tissue Regeneration. Procedia Engineering, 2013, 59, 285-291.	1.2	15
98	Mechanical, biological and tribological behaviour of fixation plates 3D printed by electron beam and selective laser melting. International Journal of Advanced Manufacturing Technology, 2020, 109, 673-688.	1.5	15
99	Permeability Evaluation of Lay-down Patterns and Pore Size of Pcl Scaffolds. Procedia Engineering, 2013, 59, 255-262.	1.2	14
100	Structural optimisation for medical implants through additive manufacturing. Progress in Additive Manufacturing, 2020, 5, 95-110.	2.5	14
101	Investigating the Influence of Architecture and Material Composition of 3D Printed Anatomical Design Scaffolds for Large Bone Defects. International Journal of Bioprinting, 2021, 7, 268.	1.7	14
102	Biomanufacturing of customized modular scaffolds for critical bone defects. CIRP Annals - Manufacturing Technology, 2019, 68, 209-212.	1.7	13
103	Investigations of Graphene and Nitrogen-Doped Graphene Enhanced Polycaprolactone 3D Scaffolds for Bone Tissue Engineering. Nanomaterials, 2021, 11, 929.	1.9	13
104	Multimaterial bioprinting approaches and their implementations for vascular and vascularized tissues. Bioprinting, 2021, 24, e00159.	2.9	13
105	Application of additively manufactured 3D scaffolds for bone cancer treatment: a review. Bio-Design and Manufacturing, 2022, 5, 556-579.	3.9	12
106	In Vivo Investigation of Polymer-Ceramic PCL/HA and PCL/β-TCP 3D Composite Scaffolds and Electrical Stimulation for Bone Regeneration. Polymers, 2022, 14, 65.	2.0	12
107	Rapid manufacturing of medical prostheses. International Journal of Manufacturing Technology and Management, 2004, 6, 567.	0.1	11
108	A concise review on the role of selenium for bone cancer applications. Bone, 2021, 149, 115974.	1.4	11

#	Article	IF	CITATIONS
109	Bone Bricks: The Effect of Architecture and Material Composition on the Mechanical and Biological Performance of Bone Scaffolds. ACS Omega, 2022, 7, 7515-7530.	1.6	11
110	Using green emitting pH-responsive nanogels to report environmental changes within hydrogels: a nanoprobe for versatile sensing. Nanoscale, 2019, 11, 11484-11495.	2.8	10
111	State of the art of solid freeform fabrication for soft and hard tissue engineering. WIT Transactions on Ecology and the Environment, 2006, , .	0.0	10
112	Additive Manufacturing in Jewellery Design. , 2012, , .		9
113	Real time control of mixing in Reaction Injection Moulding. Chemical Engineering Research and Design, 2016, 105, 31-43.	2.7	9
114	Laser micromachining for mould manufacturing: II. Manufacture and testing of mould inserts. Assembly Automation, 2007, 27, 231-239.	1.0	8
115	Structural and Vascular Analysis of Tissue Engineering Scaffolds, Part 2: Topology Optimisation. Methods in Molecular Biology, 2012, 868, 209-236.	0.4	8
116	Structural and Vascular Analysis of Tissue Engineering Scaffolds, Part 1: Numerical Fluid Analysis. Methods in Molecular Biology, 2012, 868, 183-207.	0.4	8
117	Highly swelling pH-responsive microgels for dual mode near infra-red fluorescence reporting and imaging. Nanoscale Advances, 2020, 2, 4261-4271.	2.2	8
118	Experimental and Numerical Simulations of 3D-Printed Polycaprolactone Scaffolds for Bone Tissue Engineering Applications. Materials, 2021, 14, 3546.	1.3	8
119	Biofabrication of Hydrogel Constructs. Advances in Predictive, Preventive and Personalised Medicine, 2013, , 225-254.	0.6	7
120	Polyethylene Glycol and Polyethylene Glycol/Hydroxyapatite Constructs Produced through Stereo-Thermal Lithography. Advanced Materials Research, 0, 749, 87-92.	0.3	7
121	Computer modelling and simulation of a bioreactor for tissue engineering. International Journal of Computer Integrated Manufacturing, 2014, 27, 946-959.	2.9	7
122	Additive Manufacturing Systems for Medical Applications: Case Studies. , 2019, , 187-209.		7
123	Extruded Bioreactor Perfusion Culture Supports the Chondrogenic Differentiation of Human Mesenchymal Stem/Stromal Cells in 3D Porous Poly(É›â€Caprolactone) Scaffolds. Biotechnology Journal, 2020, 15, e1900078.	1.8	7
124	Biomimetic Boundary-Based Scaffold Design for Tissue Engineering Applications. Methods in Molecular Biology, 2021, 2147, 3-18.	0.4	7
125	Optimization of Scaffolds in Alginate for Biofabrication by Genetic Algorithms. Computer Aided Chemical Engineering, 2009, 27, 1935-1940.	0.3	6
126	Tensile and Shear Stress Evaluation of Schwartz Surfaces for Scaffold Design. Procedia Engineering, 2015, 110, 167-174.	1.2	6

#	Article	IF	CITATIONS
127	Design, Fabrication and Initial Evaluation of a Novel Hybrid System for Tissue Engineering Applications. Procedia CIRP, 2017, 65, 213-218.	1.0	6
128	Engineering the biological performance of hierarchical nanostructured poly(ε-carpolactone) scaffolds for bone tissue engineering. CIRP Annals - Manufacturing Technology, 2020, 69, 217-220.	1.7	6
129	Photocrosslinkable Materials for the Fabrication of Tissue-Engineered Constructs by Stereolithography. Computational Methods in Applied Sciences (Springer), 2014, , 149-178.	0.1	5
130	User interface tool for a novel plasma-assisted bio-additive extrusion system. Rapid Prototyping Journal, 2018, 24, 368-378.	1.6	5
131	Design of scaffolds with computer assistance. WIT Transactions on Biomedicine and Health, 2007, , .	0.0	5
132	Computational technologies in tissue engineering. WIT Transactions on Biomedicine and Health, 2013, ,	0.0	5
133	Hybrid polycaprolactone/hydrogel scaffold fabrication and in-process plasma treatment using PABS. International Journal of Bioprinting, 2019, 5, 174.	1.7	5
134	Virtual modelling through human vision sense. International Journal on Interactive Design and Manufacturing, 2007, 1, 195-207.	1.3	4
135	Optimalmould - part II: Global optimization of the injection moulding cycle time. , 2012, , .		4
136	An Innovation System for Building Manufacturing. , 2012, , .		4
137	Evaluating the Properties of an Alginate Wound Dressing for Skin Repair. Advanced Materials Research, 0, 683, 141-144.	0.3	4
138	PCL and PCL/PLA <i>Scaffolds</i> for Bone Tissue Regeneration. Advanced Materials Research, 0, 683, 168-171.	0.3	4
139	An experimental study to investigate the micro-stereolithography tools for micro injection molding. Rapid Prototyping Journal, 2017, 23, 711-719.	1.6	4
140	Computer rapid design II: applications. International Journal of Product Development, 2004, 1, 203.	0.2	3
141	Computer rapid design I: accuracy analysis. International Journal of Product Development, 2004, 1, 183.	0.2	3
142	A Decision Tool for Green Manufacturing While Utilizing Additive Process. , 2012, , .		3
143	Cranial Biomechanical Simulation. Procedia CIRP, 2013, 5, 305-309.	1.0	3
144	Numerical Simulation of Polymeric Extruded Scaffolds Under Compression. Procedia CIRP, 2013, 5, 236-241.	1.0	3

9

#	Article	IF	CITATIONS
145	SANS/WANS Time-resolving Neutron Scattering Studiesof Polymer Phase Transitions Using NIMROD. Materials Research Society Symposia Proceedings, 2013, 1528, 1.	0.1	3
146	Combined Elastic and Shear Stress Solicitations for Topological Optimisation of Micro-CT Based Scaffolds. Procedia Engineering, 2015, 110, 159-166.	1.2	3
147	Optimization of a Patient-Specific External Fixation Device for Lower Limb Injuries. Polymers, 2021, 13, 2661.	2.0	3
148	Vat polymerization techniques for biotechnology and medicine. , 2013, , 203-207.		3
149	Moving Forward to 3D/4D Printed Building Facades. Lecture Notes in Mechanical Engineering, 2020, , 277-282.	0.3	3
150	Bio Inspired Algorithms for Injection Moulding Optimization. Advanced Materials Research, 0, 683, 771-774.	0.3	2
151	Mechanical and Biological Characteristics of Electrospun PCL Meshes – the Influence of Solvent Type and Concentration. Advanced Materials Research, 0, 683, 137-140.	0.3	2
152	PCL/Eggshell Scaffolds for Bone Regeneration. , 2014, , .		2
153	Preliminary Characterization of a Polycaprolactone-SurgihoneyRO Electrospun Mesh for Skin Tissue Engineering. Materials, 2022, 15, 89.	1.3	2
154	Optimalmould-part I: Multi-objective optimization to moulds design for injection of polymers. , 2012, , .		1
155	Levodopa Incorporation in Alginate Membranes for Drug Delivery Studies. Advanced Materials Research, 0, 749, 423-428.	0.3	1
156	OPTIMALMOULD Cooling System Influence in Injection Moulding Cycle Time Optimization. Advanced Materials Research, 0, 683, 544-547.	0.3	1
157	Bi-material Electrospun Meshes for Wound Healing Applications. Lecture Notes in Mechanical Engineering, 2020, , 258-264.	0.3	1
158	The Use of Schwartz Geometries for Scaffold Design in Tissue Engineering Applications. , 2010, , .		0
159	Computational fluid dynamics of reaction injection moulding. , 2012, , .		0
160	Thermo-kinetic curing model for stereolithographic applications. , 2012, , .		0
161	Polymers, Biomanufacturing and Regenerative Medicine. Advanced Materials Research, 2012, 506, 11-14.	0.3	0
162	Optimization of Thermoplastic Pre-Pregs Overmoulding. Applied Mechanics and Materials, 0, 365-366, 1007-1010.	0.2	0

#	Article	IF	CITATIONS
163	Human Cranial Simulation. Journal of Medical Imaging and Health Informatics, 2014, 4, 101-105.	0.2	0
164	Permeability Evaluation of Flow Behaviors Within Perfusion Bioreactors. Mechanisms and Machine Science, 2015, , 761-768.	0.3	0
165	Photocurable Alginate Bioink Development for Cartilage Replacement Bioprinting. Lecture Notes in Mechanical Engineering, 2020, , 243-249.	0.3	0