John Liggio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8944542/publications.pdf

Version: 2024-02-01

430754 454834 1,127 32 18 30 h-index citations g-index papers 33 33 33 1478 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A decadal synthesis of atmospheric emissions, ambient air quality, and deposition in the oil sands region. Integrated Environmental Assessment and Management, 2022, 18, 333-360.	1.6	17
2	New methodology shows short atmospheric lifetimes of oxidized sulfur and nitrogen due to dry deposition. Atmospheric Chemistry and Physics, 2021, 21, 8377-8392.	1.9	7
3	Airborne and ground-based measurements of aerosol optical depth of freshly emitted anthropogenic plumes in the Athabasca Oil Sands Region. Atmospheric Chemistry and Physics, 2021, 21, 10671-10687.	1.9	3
4	Fugitive Emissions of Volatile Organic Compounds from a Tailings Pond in the Oil Sands Region of Alberta. Environmental Science & Environmental Scienc	4.6	2
5	Evolution of Atmospheric Total Organic Carbon from Petrochemical Mixtures. Environmental Science & Env	4.6	3
6	Evaluating the impact of storage-and-release on aircraft-based mass-balance methodology using a regional air-quality model. Atmospheric Chemistry and Physics, 2021, 21, 15461-15491.	1.9	7
7	Uncovering global-scale risks from commercial chemicals in air. Nature, 2021, 600, 456-461.	13.7	83
8	Top-Down Determination of Black Carbon Emissions from Oil Sand Facilities in Alberta, Canada Using Aircraft Measurements. Environmental Science & Envi	4.6	7
9	Understanding the Key Role of Atmospheric Processing in Determining the Oxidative Potential of Airborne Engineered Nanoparticles. Environmental Science and Technology Letters, 2020, 7, 7-13.	3.9	12
10	Atmospheric OH Oxidation Chemistry of Particulate Liquid Crystal Monomers: An Emerging Persistent Organic Pollutant in Air. Environmental Science and Technology Letters, 2020, 7, 646-652.	3.9	43
11	Secondary organic aerosol formation from & t; > ±& t; i>-pinene, alkanes, and oil-sands-related precursors in a new oxidation flow reactor. Atmospheric Chemistry and Physics, 2019, 19, 9715-9731.	1.9	29
12	A large contribution of anthropogenic organo-nitrates to secondary organic aerosol in the Alberta oil sands. Atmospheric Chemistry and Physics, 2019, 19, 12209-12219.	1.9	18
13	Understanding the Impact of Relative Humidity and Coexisting Soluble Iron on the OH-Initiated Heterogeneous Oxidation of Organophosphate Flame Retardants. Environmental Science & Emp; Technology, 2019, 53, 6794-6803.	4.6	21
14	Measured Canadian oil sands CO2 emissions are higher than estimates made using internationally recommended methods. Nature Communications, 2019, 10, 1863.	5.8	46
15	Oxidative and Toxicological Evolution of Engineered Nanoparticles with Atmospherically Relevant Coatings. Environmental Science & Environmental Scienc	4.6	14
16	Experimental Study of OH-Initiated Heterogeneous Oxidation of Organophosphate Flame Retardants: Kinetics, Mechanism, and Toxicity. Environmental Science & Eamp; Technology, 2019, 53, 14398-14408.	4.6	25
17	Understanding the Impact of High-NO _{<i>x</i>} Conditions on the Formation of Secondary Organic Aerosol in the Photooxidation of Oil Sand-Related Precursors. Environmental Science & Environmental Science & Technology, 2019, 53, 14420-14429.	4.6	18
18	Principal component analysis of summertime ground site measurements in the Athabasca oil sands with a focus on analytically unresolved intermediate-volatility organic compounds. Atmospheric Chemistry and Physics, 2018, 18, 17819-17841.	1.9	26

#	Article	IF	CITATIONS
19	Elucidating real-world vehicle emission factors from mobile measurements over a large metropolitan region: a focus on isocyanic acid, hydrogen cyanide, and black carbon. Atmospheric Chemistry and Physics, 2018, 18, 16979-17001.	1.9	24
20	Influence of metal-mediated aerosol-phase oxidation on secondary organic aerosol formation from the ozonolysis and OH-oxidation of \hat{l}_{\pm} -pinene. Scientific Reports, 2017, 7, 40311.	1.6	15
21	Differences between measured and reported volatile organic compound emissions from oil sands facilities in Alberta, Canada. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E3756-E3765.	3.3	75
22	Understanding the primary emissions and secondary formation of gaseous organic acids in the oil sands region of Alberta, Canada. Atmospheric Chemistry and Physics, 2017, 17, 8411-8427.	1.9	33
23	Quantifying the Primary Emissions and Photochemical Formation of Isocyanic Acid Downwind of Oil Sands Operations. Environmental Science & Environmenta	4.6	14
24	Oil sands operations as a large source of secondary organic aerosols. Nature, 2016, 534, 91-94.	13.7	136
25	Secondary formation of nitrated phenols: insights from observations during the Uintah Basin Winter Ozone Study (UBWOS) 2014. Atmospheric Chemistry and Physics, 2016, 16, 2139-2153.	1.9	85
26	Emissions of hydrogen cyanide from on-road gasoline and diesel vehicles. Atmospheric Environment, 2016, 131, 185-195.	1.9	47
27	Chemical and Toxicological Evolution of Carbon Nanotubes During Atmospherically Relevant Aging Processes. Environmental Science & Environmental Scienc	4.6	37
28	Decreasing effect and mechanism of FeSO 4 seed particles on secondary organic aerosol in \hat{l}_{\pm} -pinene photooxidation. Environmental Pollution, 2014, 193, 88-93.	3.7	27
29	Heterogeneous OH Initiated Oxidation: A Possible Explanation for the Persistence of Organophosphate Flame Retardants in Air. Environmental Science & Echnology, 2014, 48, 1041-1048.	4.6	102
30	Measurements of Gas phase Acids in Diesel Exhaust: A Relevant Source of HNCO?. Environmental Science &	4.6	59
31	Are Emissions of Black Carbon from Gasoline Vehicles Underestimated? Insights from Near and On-Road Measurements. Environmental Science & Environmenta	4.6	91
32	Evaluating SOA formation from different sources of semi- and intermediate-volatility organic compounds from the Athabasca Oil Sands. Environmental Science Atmospheres, 0, , .	0.9	1