Mohamed Gamal El-Din

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/894446/mohamed-gamal-el-din-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

205 papers 6,306 citations

44 h-index

g-index

208 ext. papers

7,495 ext. citations

8.8 avg, IF

6.54 L-index

#	Paper	IF	Citations
205	Treatment Technologies for Organics and Silica Removal in Steam-Assisted Gravity Drainage Produced Water: A Comprehensive Review. <i>Energy & Energy </i>	4.1	1
204	Remediation of surface water contaminated by pathogenic microorganisms using calcium peroxide: Matrix effect, micro-mechanisms and morphological-physiological changes <i>Water Research</i> , 2022 , 211, 118074	12.5	2
203	Decomplexation of Cu(II)-EDTA by synergistic activation of persulfate with alkali and CuO: Kinetics and activation mechanism <i>Science of the Total Environment</i> , 2022 , 817, 152793	10.2	О
202	Solar-activated zinc oxide photocatalytic treatment of real oil sands process water: Effect of treatment parameters on naphthenic acids, polyaromatic hydrocarbons and acute toxicity removal <i>Science of the Total Environment</i> , 2022 , 819, 153029	10.2	О
201	Combined solar activated sulfate radical-based advanced oxidation processes (SR-AOPs) and biofiltration for the remediation of dissolved organics in oil sands produced water. <i>Chemical Engineering Journal</i> , 2022 , 433, 134579	14.7	2
200	Heterotrophic nitrification and aerobic denitrification process: Promising but a long way to go in the wastewater treatment. <i>Science of the Total Environment</i> , 2022 , 805, 150212	10.2	4
199	Advanced oxidation processes for the degradation of dissolved organics in produced water: A review of process performance, degradation kinetics and pathway. <i>Chemical Engineering Journal</i> , 2022 , 429, 132492	14.7	11
198	Biochar/iron oxide composite as an efficient peroxymonosulfate catalyst for the degradation of model naphthenic acids compounds. <i>Chemical Engineering Journal</i> , 2022 , 429, 132220	14.7	3
197	Treatment of oil sands process water by the ferric citrate under visible light irradiation. <i>Chemical Engineering Journal</i> , 2022 , 429, 132419	14.7	0
196	The treatment of electroplating wastewater using an integrated approach of interior microelectrolysis and Fenton combined with recycle ferrite. <i>Chemosphere</i> , 2022 , 286, 131543	8.4	5
195	Surface Microlenses for Much More Efficient Photodegradation in Water Treatment. <i>ACS ES&T Water</i> , 2022 , 2, 644-657		O
194	Enhanced wastewater treatment by modified basalt fiber bio-carriers: Effect of etching and surface functionalization. <i>Journal of Cleaner Production</i> , 2022 , 343, 130927	10.3	О
193	O/HO and UV-C light irradiation treatment of oil sands process water <i>Science of the Total Environment</i> , 2022 , 154804	10.2	O
192	Establishing and Optimizing a Bacterial Consortia for Effective Biodegradation of Petroleum Contaminants: Advancing Classical Microbiology via Experimental and Mathematical Approach. <i>Water (Switzerland)</i> , 2021 , 13, 3311	3	1
191	Aerobic naphthenic acid-degrading bacteria in petroleum-coke improve oil sands process water remediation in biofilters: DNA-stable isotope probing reveals methylotrophy in Schmutzdecke. <i>Science of the Total Environment</i> , 2021 , 815, 151961	10.2	2
190	Fully-automated SPE coupled to UHPLC-MS/MS method for multiresidue analysis of 26 trace antibiotics in environmental waters: SPE optimization and method validation. <i>Environmental Science and Pollution Research</i> , 2021 , 1	5.1	О
189	Pristine and engineered biochar for the removal of contaminants co-existing in several types of industrial wastewaters: A critical review. <i>Science of the Total Environment</i> , 2021 , 151120	10.2	9

(2021-2021)

188	Treatment of high-load organic wastewater by novel basalt fiber carrier media. <i>Science of the Total Environment</i> , 2021 , 758, 143760	10.2	4
187	Adsorption of metals from oil sands process water (OSPW) under natural pH by sludge-based Biochar/Chitosan composite. <i>Water Research</i> , 2021 , 194, 116930	12.5	29
186	Coagulation-flocculation followed by catalytic ozonation processes for enhanced primary treatment during wet weather conditions. <i>Journal of Environmental Management</i> , 2021 , 283, 111975	7.9	3
185	Effects of anaerobic granular sludge towards the treatment of flowback water in an up-flow anaerobic sludge blanket bioreactor: Comparison between mesophilic and thermophilic conditions. <i>Bioresource Technology</i> , 2021 , 326, 124784	11	7
184	An enhanced disintegration using refinery spent caustic for anaerobic digestion of refinery waste activated sludge. <i>Journal of Environmental Management</i> , 2021 , 284, 112022	7.9	1
183	Advancing the treatment of primary influent and effluent wastewater during wet weather flow by single versus powdered activated carbon-catalyzed ozonation for the removal of trace organic compounds. Science of the Total Environment, 2021, 770, 144679	10.2	9
182	Spent fluid catalytic cracking (FCC) catalyst enhances pyrolysis of refinery waste activated sludge. Journal of Cleaner Production, 2021 , 295, 126382	10.3	2
181	Application of basalt fibers in a biological contact oxidation reactor for the treatment of landfill leachate. <i>Journal of Cleaner Production</i> , 2021 , 297, 126648	10.3	3
180	Biochar heavy metal removal in aqueous solution depends on feedstock type and pyrolysis purging gas. <i>Environmental Pollution</i> , 2021 , 281, 117094	9.3	24
179	Bench to full-scale enhanced primary treatment of municipal wastewater under wet weather flow for minimized pollution load: evaluation of chemical addition and process control indicators. <i>Canadian Journal of Civil Engineering</i> , 2021 , 48, 470-481	1.3	3
178	Catalytic ozonation of naphthenic acids in the presence of carbon-based metal-free catalysts: Performance and kinetic study. <i>Catalysis Today</i> , 2021 , 361, 102-108	5.3	8
177	Degradation of cyclohexanecarboxylic acid as a model naphthenic acid by the UV/chlorine process: Kinetics and by-products identification. <i>Journal of Hazardous Materials</i> , 2021 , 402, 123476	12.8	8
176	A critical review on the detection, occurrence, fate, toxicity, and removal of cannabinoids in the water system and the environment. <i>Environmental Pollution</i> , 2021 , 268, 115642	9.3	6
175	A burning issue: The effect of organic ultraviolet filter exposure on the behaviour and physiology of Daphnia magna. <i>Science of the Total Environment</i> , 2021 , 750, 141707	10.2	11
174	High efficiency removal of heavy metals using tire-derived activated carbon vs commercial activated carbon: Insights into the adsorption mechanisms. <i>Chemosphere</i> , 2021 , 264, 128455	8.4	87
173	Influences of coagulation pretreatment on the characteristics of crude oil electric desalting wastewaters. <i>Chemosphere</i> , 2021 , 264, 128531	8.4	9
172	The removal of Cu(II)-EDTA chelates using green rust adsorption combined with ferrite formation process. <i>Journal of Environmental Management</i> , 2021 , 279, 111516	7.9	3
171	Formation of disinfection by-products in a UV-activated mixed chlorine/chloramine system. <i>Journal of Hazardous Materials</i> , 2021 , 407, 124373	12.8	6

170	Characterization of raw and ozonated oil sands process water utilizing atmospheric pressure gas chromatography time-of-flight mass spectrometry combined with solid phase microextractionun. <i>Chemosphere</i> , 2021 , 266, 129017	8.4	O
169	Bifunctional Fe for Induced Graphitization and Catalytic Ozonation Based on a Fe/N-Doped Carbon-AlO Framework: Theoretical Calculations Guided Catalyst Design and Optimization. <i>Environmental Science & Environmental Scienc</i>	10.3	4
168	The application of UV-C laser in persulfate activation for micropollutant removal: Case study with iodinated X-ray contrast medias. <i>Science of the Total Environment</i> , 2021 , 779, 146340	10.2	3
167	Enhanced primary treatment during wet weather flow using ferrate as a coagulant, coagulant aid and disinfectant. <i>Journal of Environmental Management</i> , 2021 , 290, 112603	7.9	6
166	Solar photocatalytic treatment of model and real oil sands process water naphthenic acids by bismuth tungstate: Effect of catalyst morphology and cations on the degradation kinetics and pathways. <i>Journal of Hazardous Materials</i> , 2021 , 413, 125396	12.8	4
165	Treatment of oil sands process water using petroleum coke: Field pilot. <i>Journal of Environmental Management</i> , 2021 , 289, 112407	7.9	1
164	Treatment of a mixture of pharmaceuticals, herbicides and perfluorinated compounds by powdered activated carbon and ozone: Synergy, catalysis and insights into non-free OH contingent mechanisms. <i>Science of the Total Environment</i> , 2021 , 777, 146138	10.2	5
163	Bacterial diversity in petroleum coke based biofilters treating oil sands process water. <i>Science of the Total Environment</i> , 2021 , 782, 146742	10.2	3
162	Treatment of printing and dyeing wastewater in biological contact oxidation reactors comprising basalt fibers and combination fillers as bio-carriers: Elucidation of bacterial communities and underlying mechanisms. <i>Science of the Total Environment</i> , 2021 , 785, 147272	10.2	6
161	Application of an indigenous microorganisms-based fixed-bed GAC-biofilm reactor for passive and sustainable treatment of oil sands process water through combined adsorption and biodegradation processes. <i>Chemosphere</i> , 2021 , 280, 130635	8.4	3
160	Adsorption of metals in oil sands process water by a biochar/iron oxide composite: Influence of the composite structure and surface functional groups. <i>Chemical Engineering Journal</i> , 2021 , 421, 129937	14.7	8
159	Removal of per- and poly-fluoroalkyl substances (PFASs) by wetlands: Prospects on plants, microbes and the interplay. <i>Science of the Total Environment</i> , 2021 , 800, 149570	10.2	9
158	Influences of integrated coagulation-ozonation pretreatment on the characteristics of dissolved organic pollutants (DOPs) of heavy oil electric desalting wastewaters. <i>Journal of Environmental Management</i> , 2021 , 300, 113756	7.9	2
157	Influences of humic-rich natural materials on efficiencies of UASB reactor: A comparative study. <i>Bioresource Technology</i> , 2021 , 341, 125844	11	O
156	Fourier transform infrared spectroscopy as a surrogate tool for the quantification of naphthenic acids in oil sands process water and groundwater. <i>Science of the Total Environment</i> , 2020 , 734, 139191	10.2	10
155	Molecular transformation of dissolved organic matter in process water from oil and gas operation during UV/HO, UV/chlorine, and UV/persulfate processes. <i>Science of the Total Environment</i> , 2020 , 730, 139072	10.2	10
154	Inorganic fraction of oil sands process-affected water induces mammalian macrophage stress gene expression and acutely modulates immune cell functional markers at both the gene and protein levels. <i>Toxicology in Vitro</i> , 2020 , 66, 104875	3.6	2
153	Geothermal energy resources: potential environmental impact and land reclamation. <i>Environmental Reviews</i> , 2020 , 28, 415-427	4.5	13

(2019-2020)

152	Aerobic sludge granulation in shale gas flowback water treatment: Assessment of the bacterial community dynamics and modeling of bioreactor performance using artificial neural network. Bioresource Technology, 2020, 313, 123687	11	10
151	Transmission of SARS-CoV-2 via fecal-oral and aerosols-borne routes: Environmental dynamics and implications for wastewater management in underprivileged societies. <i>Science of the Total Environment</i> , 2020 , 743, 140709	10.2	82
150	Degradation of organics in real oil sands process water by electro-oxidation using graphite and dimensionally stable anodes. <i>Chemical Engineering Journal</i> , 2020 , 389, 124406	14.7	16
149	Biofiltration of oil sands process water in fixed-bed biofilm reactors shapes microbial community structure for enhanced degradation of naphthenic acids. <i>Science of the Total Environment</i> , 2020 , 718, 137028	10.2	12
148	Comprehensive chemical analysis and characterization of heavy oil electric desalting wastewaters in petroleum refineries. <i>Science of the Total Environment</i> , 2020 , 724, 138117	10.2	12
147	Low-current electro-oxidation enhanced the biodegradation of the recalcitrant naphthenic acids in oil sands process water. <i>Journal of Hazardous Materials</i> , 2020 , 398, 122807	12.8	7
146	Biochar surface complexation and Ni(II), Cu(II), and Cd(II) adsorption in aqueous solutions depend on feedstock type. <i>Science of the Total Environment</i> , 2020 , 712, 136538	10.2	74
145	Perspectives on environmental impacts and a land reclamation strategy for solar and wind energy systems. <i>Science of the Total Environment</i> , 2020 , 718, 134602	10.2	41
144	The impact of oil sands process water matrix on the ozonation of naphthenic acids: from a model compound to a natural mixture. <i>Canadian Journal of Civil Engineering</i> , 2020 , 47, 1166-1174	1.3	
143	High-rate nitrogen removal from carbon limited wastewater using sulfur-based constructed wetland: Impact of sulfur sources. <i>Science of the Total Environment</i> , 2020 , 744, 140969	10.2	13
142	Insight into in-situ radical and non-radical oxidative degradation of organic compounds in complex real matrix during electrooxidation with boron doped diamond electrode: A case study of oil sands process water treatment. <i>Applied Catalysis B: Environmental</i> , 2020 , 279, 119366	21.8	31
141	Mesoporous carbon xerogel material for the adsorption of model naphthenic acids: structure effect and kinetics modelling. <i>Environmental Technology (United Kingdom)</i> , 2020 , 41, 3534-3543	2.6	4
140	Exposure to Organic Fraction Extracted from Oil Sands Process-Affected Water Has Negligible Impact on Pregnancy and Lactation of Mice. <i>Environmental Science & Environmental </i>	£4.3	5
139	Isolated cellulose nanofibers for Cu (II) and Zn (II) removal: performance and mechanisms. <i>Carbohydrate Polymers</i> , 2019 , 221, 231-241	10.3	41
138	Biochar properties and lead(II) adsorption capacity depend on feedstock type, pyrolysis temperature, and steam activation. <i>Chemosphere</i> , 2019 , 231, 393-404	8.4	98
137	Integrated mild ozonation with biofiltration can effectively enhance the removal of naphthenic acids from hydrocarbon-contaminated water. <i>Science of the Total Environment</i> , 2019 , 678, 197-206	10.2	14
136	Ferrate oxidation of distinct naphthenic acids species isolated from process water of unconventional petroleum production. <i>Science of the Total Environment</i> , 2019 , 672, 906-915	10.2	2
135	Electro-oxidation by graphite anode for naphthenic acids degradation, biodegradability enhancement and toxicity reduction. <i>Science of the Total Environment</i> , 2019 , 671, 270-279	10.2	14

134	Degradation kinetics and structure-reactivity relation of naphthenic acids during anodic oxidation on graphite electrodes. <i>Chemical Engineering Journal</i> , 2019 , 370, 997-1007	14.7	26
133	Comparison of UV/Persulfate and UV/HO for the removal of naphthenic acids and acute toxicity towards Vibrio fischeri from petroleum production process water. <i>Science of the Total Environment</i> , 2019 , 694, 133686	10.2	21
132	Separation of oil sands process water organics and inorganics and examination of their acute toxicity using standard in-vitro bioassays. <i>Science of the Total Environment</i> , 2019 , 695, 133532	10.2	12
131	Photodegradation of naphthenic acids induced by natural photosensitizer in oil sands process water. <i>Water Research</i> , 2019 , 164, 114913	12.5	18
130	Persistent and transgenerational effects of raw and ozonated oil sands process-affected water exposure on a model vertebrate, the zebrafish. <i>Science of the Total Environment</i> , 2019 , 693, 133611	10.2	4
129	Adsorption of organic matter in oil sands process water (OSPW) by carbon xerogel. <i>Water Research</i> , 2019 , 154, 402-411	12.5	19
128	Assessment of ozonation reactivity of aromatic and oxidized naphthenic acids species separated using a silver-ion solid phase extraction method. <i>Chemosphere</i> , 2019 , 219, 313-320	8.4	4
127	Bioreactors for oil sands process-affected water (OSPW) treatment: A critical review. <i>Science of the Total Environment</i> , 2018 , 627, 916-933	10.2	23
126	The effect of carboxyl multiwalled carbon nanotubes content on the structure and performance of polysulfone membranes for oil sands process-affected water treatment. <i>Separation and Purification Technology</i> , 2018 , 199, 170-181	8.3	11
125	The roles of pH and draw solute on forward osmosis process treating aqueous naphthenic acids. Journal of Membrane Science, 2018 , 549, 456-465	9.6	9
124	Degradation of recalcitrant naphthenic acids from raw and ozonated oil sands process-affected waters by a semi-passive biofiltration process. <i>Water Research</i> , 2018 , 133, 310-318	12.5	17
123	The role of ozone pretreatment on optimization of membrane bioreactor for treatment of oil sands process-affected water. <i>Journal of Hazardous Materials</i> , 2018 , 347, 470-477	12.8	17
122	Isotherm and kinetic studies on adsorption of oil sands process-affected water organic compounds using granular activated carbon. <i>Chemosphere</i> , 2018 , 202, 716-725	8.4	29
121	Characterization and determination of naphthenic acids species in oil sands process-affected water and groundwater from oil sands development area of Alberta, Canada. <i>Water Research</i> , 2018 , 128, 129-	-1 ¹² 7 ⁵	36
120	Monitoring of classical, oxidized, and heteroatomic naphthenic acids species in oil sands process water and groundwater from the active oil sands operation area. <i>Science of the Total Environment</i> , 2018 , 645, 277-285	10.2	17
119	Degradation of naphthenic acid model compounds in aqueous solution by UV activated persulfate: Influencing factors, kinetics and reaction mechanisms. <i>Chemosphere</i> , 2018 , 211, 271-277	8.4	34
118	Growth and recovery of zebrafish embryos after developmental exposure to raw and ozonated oil sands process-affected water. <i>Chemosphere</i> , 2018 , 206, 405-413	8.4	4
117	Assessment of raw and ozonated oil sands process-affected water exposure in developing zebrafish: Associating morphological changes with gene expression. <i>Environmental Pollution</i> , 2018 , 241, 959-968	9.3	10

1	116	Comparison of classical fenton, nitrilotriacetic acid (NTA)-Fenton, UV-Fenton, UV photolysis of Fe-NTA, UV-NTA-Fenton, and UV-HO for the degradation of cyclohexanoic acid. <i>Chemosphere</i> , 2017 , 175, 178-185	8.4	39	
1	115	Understanding the similarities and differences between ozone and peroxone in the degradation of naphthenic acids: Comparative performance for potential treatment. <i>Chemosphere</i> , 2017 , 180, 149-159	8.4	23	
1	114	Optimization of moving bed biofilm reactors for oil sands process-affected water treatment: The effect of HRT and ammonia concentrations. <i>Science of the Total Environment</i> , 2017 , 598, 690-696	10.2	14	
1	113	Dynamics of naphthenic acids and microbial community structures in a membrane bioreactor treating oil sands process-affected water: impacts of supplemented inorganic nitrogen and hydraulic retention time. <i>RSC Advances</i> , 2017 , 7, 17670-17681	3.7	12	
1	112	Dynamics of microbial community structure and nutrient removal from an innovative side-stream enhanced biological phosphorus removal process. <i>Journal of Environmental Management</i> , 2017 , 198, 300-307	7.9	14	
1	[11	Application of UV-irradiated Fe(III)-nitrilotriacetic acid (UV-Fe(III)NTA) and UV-NTA-Fenton systems to degrade model and natural occurring naphthenic acids. <i>Chemosphere</i> , 2017 , 179, 359-366	8.4	18	
1	110	Characterization of microbial communities during start-up of integrated fixed-film activated sludge (IFAS) systems for the treatment of oil sands process-affected water (OSPW). <i>Biochemical Engineering Journal</i> , 2017 , 122, 123-132	4.2	20	
1	109	Performance of flocs and biofilms in integrated fixed-film activated sludge (IFAS) systems for the treatment of oil sands process-affected water (OSPW). <i>Chemical Engineering Journal</i> , 2017 , 314, 368-37	7 ^{14.7}	21	
1	108	Forward osmosis as an approach to manage oil sands tailings water and on-site basal depressurization water. <i>Journal of Hazardous Materials</i> , 2017 , 327, 18-27	12.8	17	
1	107	Impact of environmental conditions on bacterial photoreactivation in wastewater effluents. <i>Environmental Sciences: Processes and Impacts</i> , 2017 , 19, 31-37	4.3	7	
1	106	Comparison of biomass from integrated fixed-film activated sludge (IFAS), moving bed biofilm reactor (MBBR) and membrane bioreactor (MBR) treating recalcitrant organics: Importance of attached biomass. <i>Journal of Hazardous Materials</i> , 2017 , 326, 120-129	12.8	41	
1	105	A comparative study of microbial dynamics and phosphorus removal for a two side-stream wastewater treatment processes. <i>RSC Advances</i> , 2017 , 7, 45938-45948	3.7	11	
1	104	Comparison of methods for determination of total oil sands-derived naphthenic acids in water samples. <i>Chemosphere</i> , 2017 , 187, 376-384	8.4	33	
1	103	Comparison of the Acute Immunotoxicity of Nonfractionated and Fractionated Oil Sands Process-Affected Water Using Mammalian Macrophages. <i>Environmental Science & amp; Technology</i> , 2017 , 51, 8624-8634	10.3	14	
1	102	The toxicity of oil sands process-affected water (OSPW): A critical review. <i>Science of the Total Environment</i> , 2017 , 601-602, 1785-1802	10.2	89	
1	101	Fate and abundance of classical and heteroatomic naphthenic acid species after advanced oxidation processes: Insights and indicators of transformation and degradation. <i>Water Research</i> , 2017 , 125, 62-71	12.5	27	
1	100	Investigation of dissociation constants for individual and total naphthenic acids species using ultra performance liquid chromatography ion mobility time-of-flight mass spectrometry analysis. <i>Chemosphere</i> , 2017 , 184, 738-746	8.4	6	
Ş	99	Sensory and Behavioral Responses of a Model Fish to Oil Sands Process-Affected Water with and without Treatment. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	7	

98	Effects of ozone pretreatment and operating conditions on membrane fouling behaviors of an anoxic-aerobic membrane bioreactor for oil sands process-affected water (OSPW) treatment. <i>Water Research</i> , 2016 , 105, 444-455	12.5	40
97	Comparison of Nitrilotriacetic Acid and [S,S]-Ethylenediamine-N,NTdisuccinic Acid in UV-Fenton for the Treatment of Oil Sands Process-Affected Water at Natural pH. <i>Environmental Science & Eamp; Technology</i> , 2016 , 50, 10535-10544	10.3	41
96	Treatment of raw and ozonated oil sands process-affected water under decoupled denitrifying anoxic and nitrifying aerobic conditions: a comparative study. <i>Biodegradation</i> , 2016 , 27, 247-264	4.1	16
95	Optimization of ozonation combined with integrated fixed-film activated sludge (IFAS) in the treatment of oil sands process-affected water (OSPW). <i>International Biodeterioration and Biodegradation</i> , 2016 , 112, 31-41	4.8	13
94	Characterization and distribution of metal and nonmetal elements in the Alberta oil sands region of Canada. <i>Chemosphere</i> , 2016 , 147, 218-29	8.4	23
93	Oxidation of Oil Sands Process-Affected Water by Potassium Ferrate(VI). <i>Environmental Science & Eamp; Technology</i> , 2016 , 50, 4238-47	10.3	30
92	Investigation of the impact of organic solvent type and solution pH on the extraction efficiency of naphthenic acids from oil sands process-affected water. <i>Chemosphere</i> , 2016 , 146, 472-7	8.4	43
91	Mechanistic investigation of industrial wastewater naphthenic acids removal using granular activated carbon (GAC) biofilm based processes. <i>Science of the Total Environment</i> , 2016 , 541, 238-246	10.2	19
90	Pilot-scale study on the treatment of basal aquifer water using ultrafiltration, reverse osmosis and evaporation/crystallization to achieve zero-liquid discharge. <i>Journal of Environmental Management</i> , 2016 , 165, 213-223	7.9	22
89	Treatment of oil sands process-affected water (OSPW) using a membrane bioreactor with a submerged flat-sheet ceramic microfiltration membrane. <i>Water Research</i> , 2016 , 88, 1-11	12.5	43
88	Kinetics study on the degradation of a model naphthenic acid by ethylenediamine-N,NFdisuccinic acid-modified Fenton process. <i>Journal of Hazardous Materials</i> , 2016 , 318, 371-378	12.8	43
87	Degradation of a model naphthenic acid by nitrilotriacetic acid Imodified Fenton process. <i>Chemical Engineering Journal</i> , 2016 , 292, 340-347	14.7	40
86	Pilot-scale UV/H2O2 advanced oxidation process for municipal reuse water: Assessing micropollutant degradation and estrogenic impacts on goldfish (Carassius auratus L.). <i>Water Research</i> , 2016 , 101, 157-166	12.5	29
85	Comparison of UV/hydrogen peroxide, potassium ferrate(VI), and ozone in oxidizing the organic fraction of oil sands process-affected water (OSPW). <i>Water Research</i> , 2016 , 100, 476-485	12.5	54
84	Silver-Ion Solid Phase Extraction Separation of Classical, Aromatic, Oxidized, and Heteroatomic Naphthenic Acids from Oil Sands Process-Affected Water. <i>Environmental Science & Environmental Science</i>	10.3	24
83	Application of Engineered Si Nanoparticles in Light-Induced Advanced Oxidation Remediation of a Water-Borne Model Contaminant. <i>ACS Nano</i> , 2016 , 10, 5405-12	16.7	19
82	Positive and negative electrospray ionization analyses of the organic fractions in raw and oxidized oil sands process-affected water. <i>Chemosphere</i> , 2016 , 165, 239-247	8.4	16
81	Treatment of oil sands process-affected water using membrane bioreactor coupled with ozonation: A comparative study. <i>Chemical Engineering Journal</i> , 2016 , 302, 485-497	14.7	33

(2014-2015)

Coagulation/flocculation process with polyaluminum chloride for the remediation of oil sands process-affected water: Performance and mechanism study. <i>Journal of Environmental Management</i> , 2015 , 160, 254-62	7.9	50
A hybrid froth flotation-filtration system as a pretreatment for oil sands tailings pond recycle water management: Bench- and pilot-scale studies. <i>Journal of Environmental Management</i> , 2015 , 161, 113-123	₃ 7·9	1
Effects of Ozone and Ozone/Hydrogen Peroxide on the Degradation of Model and Real Oil-Sands-Process-Affected-Water Naphthenic Acids. <i>Ozone: Science and Engineering</i> , 2015 , 37, 45-54	2.4	30
Fractionation of oil sands-process affected water using pH-dependent extractions: a study of dissociation constants for naphthenic acids species. <i>Chemosphere</i> , 2015 , 127, 291-6	8.4	35
Probing the adsorption of weak acids on graphite using amplitude modulation-frequency modulation atomic force microscopy. <i>Langmuir</i> , 2015 , 31, 3069-75	4	6
Next-generation pyrosequencing analysis of microbial biofilm communities on granular activated carbon in treatment of oil sands process-affected water. <i>Applied and Environmental Microbiology</i> , 2015 , 81, 4037-48	4.8	29
Pseudomonads biodegradation of aromatic compounds in oil sands process-affected water. <i>Science of the Total Environment</i> , 2015 , 521-522, 59-67	10.2	10
Treatment of oil sands process-affected water (OSPW) using ozonation combined with integrated fixed-film activated sludge (IFAS). <i>Water Research</i> , 2015 , 85, 167-76	12.5	40
Effect of ozonation on the naphthenic acidsTspeciation and toxicity of pH-dependent organic extracts of oil sands process-affected water. <i>Science of the Total Environment</i> , 2015 , 506-507, 66-75	10.2	41
Ultra Performance Liquid Chromatography Ion Mobility Time-of-Flight Mass Spectrometry Characterization of Naphthenic Acids Species from Oil Sands Process-Affected Water. <i>Environmental Science & Discourse Comp.</i> 2015 , 49, 11737-45	10.3	25
Treatment of oil sands process-affected water using moving bed biofilm reactors: With and without ozone pretreatment. <i>Bioresource Technology</i> , 2015 , 192, 219-27	11	51
An omic approach for the identification of oil sands process-affected water compounds using multivariate statistical analysis of ultrahigh resolution mass spectrometry datasets. <i>Science of the Total Environment</i> , 2015 , 511, 230-7	10.2	10
The impact of various ozone pretreatment doses on the performance of endogenous microbial communities for the remediation of oil sands process-affected water. <i>International Biodeterioration and Biodegradation</i> , 2015 , 100, 17-28	4.8	29
Effects of different pretreatments on the performance of ceramic ultrafiltration membrane during the treatment of oil sands tailings pond recycle water: a pilot-scale study. <i>Journal of Environmental Management</i> , 2015 , 151, 540-9	7.9	17
Granular activated carbon for simultaneous adsorption and biodegradation of toxic oil sands process-affected water organic compounds. <i>Journal of Environmental Management</i> , 2015 , 152, 49-57	7.9	33
The power of power: electrokinetic control of PAH interactions with exfoliated graphite. <i>Journal of Hazardous Materials</i> , 2015 , 288, 25-33	12.8	5
UV and hydrogen peroxide treatment restores changes in innate immunity caused by exposure of fish to reuse water. <i>Water Research</i> , 2015 , 71, 257-73	12.5	17
Effect of reactor configuration and microbial characteristics on biofilm reactors for oil sands process-affected water treatment. <i>International Biodeterioration and Biodegradation</i> , 2014 , 89, 74-81	4.8	34
	process-affected water: Performance and mechanism study. Journal of Environmental Management, 2015, 160, 254-62 A hybrid froth flotation-filtration system as a pretreatment for oil sands tailings pond recycle water management: Bench- and pilot-scale studies. Journal of Environmental Management, 2015, 161, 113-12: Effects of Ozone and Ozone/Hydrogen Peroxide on the Degradation of Model and Real Oil-Sands-Process-Affected-Water Naphthenic Acids. Ozone: Science and Engineering, 2015, 37, 45-54 Fractionation of oil sands-process affected water using pH-dependent extractions: a study of dissociation constants for naphthenic acids species. Chemosphere, 2015, 127, 291-6 Probing the adsorption of weak acids on graphite using amplitude modulation-frequency modulation atomic force microscopy. Langmuir, 2015, 31, 3069-75 Next-generation pyrosequencing analysis of microbial biofilm communities on granular activated carbon in treatment of oil sands process-affected water. Applied and Environmental Microbiology, 2015, 81, 4037-48 Pseudomonads biodegradation of aromatic compounds in oil sands process-affected water. Science of the Total Environment, 2015, 521-522, 59-67 Treatment of oil sands process-affected water (OSPW) using ozonation combined with integrated fixed-film activated sludge (IFAS). Water Research, 2015, 85, 167-76 Effect of ozonation on the naphthenic acids Tspeciation and toxicity of pH-dependent organic extracts of oil sands process-affected water. Science of the Total Environment, 2015, 506-507, 66-75 Ultra Performance Liquid Chromatography Ion Mobility Time-of-Flight Mass Spectrometry Characterization of Naphthenic Acids Species from Oil Sands Process-Affected Water. Environmental Science Ramp, Technology, 2015, 49, 1173-45 Treatment of oil sands process-affected water using moving bed biofilm reactors: With and without ozone pretreatment. Bioresource Technology, 2015, 191, 173-45 Treatment of oil sands process-affected water using moving bed biofilm reactors: With and without ozone pretreatment.	process-affected water: Performance and mechanism study. Journal of Environmental Management, 2015, 160, 254-62 A hybrid froth flotation-filtration system as a pretreatment for oil sands tailings pond recycle water management: Bench- and pilot-scale studies. Journal of Environmental Management, 2015, 161, 113-123 7-9 Effects of Ozone and Ozone/Hydrogen Peroxide on the Degradation of Model and Real Oil-Sands-Process-Affected-Water Naphthenic Acids. Ozone: Science and Engineering, 2015, 37, 45-54 Fractionation of oil sands-process-affected water using pH-dependent extractions: a study of dissociation constants for naphthenic acids species. Chemosphere, 2015, 127, 291-6 Probing the adsorption of weak acids on graphite using amplitude modulation-frequency modulation atomic force microscopy. Langmuir, 2015, 31, 3069-75 Next-generation pyrosequencing analysis of microbial biofilm communities on granular activated carbon in treatment of oil sands process-affected water. Applied and Environmental Microbiology, 2015, 81, 4037-48 Pseudomonads biodegradation of aromatic compounds in oil sands process-affected water. Science of the Total Environment, 2015, 521-522, 59-67 Treatment of oil sands process-affected water (OSPW) using ozonation combined with integrated fixed-film activated sludge (IFAS). Water Research, 2015, 85, 167-76 Effect of ozonation on the naphthenic acids Tspeciation and toxicity of pH-dependent organic extracts of oil sands process-affected water. Science of the Total Environment, 2015, 506-507, 66-75 Ultra Performance Liquid Chromatography Ion Mobility Time-of-Flight Mass Spectrometry Characterization of Naphthenic Acids Species from Iol Sands Process-Affected Water. Environmental Science Ramp; Technology, 2015, 49, 11737-45 Treatment of oil sands process-affected water using moving bed biofilm reactors: With and without cozone pretreatment. Bioresource Technology, 2015, 192, 219-27 An omic approach for the identification of oil sands process-affected water compounds using multivariate stati

62	Removal of organic compounds and trace metals from oil sands process-affected water using zero valent iron enhanced by petroleum coke. <i>Journal of Environmental Management</i> , 2014 , 139, 50-8	7.9	30
61	Treatment of oil sands process-affected water by submerged ceramic membrane microfiltration system. <i>Separation and Purification Technology</i> , 2014 , 138, 198-209	8.3	17
60	Advanced analytical mass spectrometric techniques and bioassays to characterize untreated and ozonated oil sands process-affected water. <i>Environmental Science & Environmental & Environmenta</i>	10.3	50
59	Prediction of naphthenic acid species degradation by kinetic and surrogate models during the ozonation of oil sands process-affected water. <i>Science of the Total Environment</i> , 2014 , 493, 282-90	10.2	20
58	Impact of ozonation on particle aggregation in mature fine tailings. <i>Journal of Environmental Management</i> , 2014 , 146, 535-542	7.9	3
57	Application of a solar UV/chlorine advanced oxidation process to oil sands process-affected water remediation. <i>Environmental Science & Environmental & Enviro</i>	10.3	83
56	Treatment of oil sands process-affected water with ceramic ultrafiltration membrane: Effects of operating conditions on membrane performance. <i>Separation and Purification Technology</i> , 2014 , 122, 170	0 ⁸ 132	54
55	Microbial community structure and operational performance of a fluidized bed biofilm reactor treating oil sands process-affected water. <i>International Biodeterioration and Biodegradation</i> , 2014 , 91, 111-118	4.8	52
54	The analysis of goldfish (Carassius auratus L.) innate immune responses after acute and subchronic exposures to oil sands process-affected water. <i>Toxicological Sciences</i> , 2014 , 138, 59-68	4.4	29
53	Impact of ozonation pre-treatment of oil sands process-affected water on the operational performance of a GAC-fluidized bed biofilm reactor. <i>Biodegradation</i> , 2014 , 25, 811-23	4.1	24
52	Impact of polymeric membrane filtration of oil sands process water on organic compounds quantification. <i>Water Science and Technology</i> , 2014 , 70, 771-9	2.2	8
51	Ozone inactivation of infectious prions in rendering plant and municipal wastewaters. <i>Science of the Total Environment</i> , 2014 , 470-471, 717-25	10.2	8
50	Indigenous microbes survive in situ ozonation improving biodegradation of dissolved organic matter in aged oil sands process-affected waters. <i>Chemosphere</i> , 2013 , 93, 2748-55	8.4	16
49	The impacts of ozonation on oil sands process-affected water biodegradability and biofilm formation characteristics in bioreactors. <i>Bioresource Technology</i> , 2013 , 130, 269-77	11	82
48	An in-situ integrated system of carbon nanotubes nanocomposite membrane for oil sands process-affected water treatment. <i>Journal of Membrane Science</i> , 2013 , 429, 418-427	9.6	46
47	Impact of ozonation on naphthenic acids speciation and toxicity of oil sands process-affected water to Vibrio fischeri and mammalian immune system. <i>Environmental Science & Environmental Science & E</i>	10.3	94
46	Fabrication of porous polymeric nanocomposite membranes with enhanced anti-fouling properties: Effect of casting composition. <i>Journal of Membrane Science</i> , 2013 , 444, 449-460	9.6	63
45	Desalination of oil sands process-affected water and basal depressurization water in Fort McMurray, Alberta, Canada: application of electrodialysis. <i>Water Science and Technology</i> , 2013 , 68, 2668	- 75	10

(2011-2013)

44	Ozonation degrades all detectable organic compound classes in oil sands process-affected water; an application of high-performance liquid chromatography/obitrap mass spectrometry. <i>Rapid Communications in Mass Spectrometry</i> , 2013 , 27, 2317-26	2.2	42
43	Decomposition of cyclohexanoic acid by the UV/H2O2 process under various conditions. <i>Science of the Total Environment</i> , 2012 , 426, 387-92	10.2	46
42	Petroleum coke adsorption as a water management option for oil sands process-affected water. <i>Science of the Total Environment</i> , 2012 , 427-428, 364-72	10.2	88
41	A solar-driven UV/Chlorine advanced oxidation process. <i>Water Research</i> , 2012 , 46, 5672-5682	12.5	87
40	Toxicity of untreated and ozone-treated oil sands process-affected water (OSPW) to early life stages of the fathead minnow (Pimephales promelas). <i>Water Research</i> , 2012 , 46, 6359-68	12.5	118
39	Evaluation of membrane fouling for in-line filtration of oil sands process-affected water: the effects of pretreatment conditions. <i>Environmental Science & Environmental Scie</i>	10.3	49
38	Transcriptional responses of the brain-gonad-liver axis of fathead minnows exposed to untreated and ozone-treated oil sands process-affected water. <i>Environmental Science & Environmental Science & E</i>	10.3	63
37	Effects of exposure to oil sands process-affected water from experimental reclamation ponds on Chironomus dilutus. <i>Water Research</i> , 2012 , 46, 1662-72	12.5	57
36	The acute and sub-chronic exposures of goldfish to naphthenic acids induce different host defense responses. <i>Aquatic Toxicology</i> , 2012 , 109, 143-9	5.1	45
35	Impact of peroxydisulfate in the presence of zero valent iron on the oxidation of cyclohexanoic acid and naphthenic acids from oil sands process-affected water. <i>Environmental Science & amp; Technology</i> , 2012 , 46, 8984-91	10.3	91
34	Effect of molecular structure on the relative reactivity of naphthenic acids in the UV/HIDI advanced oxidation process. <i>Environmental Science & Environmental Science & Envir</i>	10.3	57
33	Commercial naphthenic acids and the organic fraction of oil sands process water induce different effects on pro-inflammatory gene expression and macrophage phagocytosis in mice. <i>Journal of Applied Toxicology</i> , 2012 , 32, 968-79	4.1	28
32	Impact of conditioning films on the initial adhesion of Burkholderia cepacia. <i>Colloids and Surfaces B: Biointerfaces</i> , 2012 , 91, 181-8	6	44
31	Physico-Chemical Processes. Water Environment Research, 2012 , 84, 971-1028	2.8	3
30	Structure-reactivity of naphthenic acids in the ozonation process. <i>Environmental Science & Environmental Science & Technology</i> , 2011 , 45, 7431-7	10.3	72
29	Oxidation kinetics of two pesticides in natural waters by ozonation and ozone combined with hydrogen peroxide. <i>Water Research</i> , 2011 , 45, 2517-26	12.5	62
28	Ozone treatment ameliorates oil sands process water toxicity to the mammalian immune system. <i>Water Research</i> , 2011 , 45, 5849-57	12.5	51
27	Naphthenic acids speciation and removal during petroleum-coke adsorption and ozonation of oil sands process-affected water. <i>Science of the Total Environment</i> , 2011 , 409, 5119-25	10.2	131

26	The effects of pretreatment on nanofiltration and reverse osmosis membrane filtration for desalination of oil sands process-affected water. <i>Separation and Purification Technology</i> , 2011 , 81, 418-	-4 ⁸ 28 ³	83
25	Hydrodynamic Characterization and Mass Transfer Analysis of an In-Line Multi-Jets Ozone Contactor. <i>Ozone: Science and Engineering</i> , 2011 , 33, 449-462	2.4	7
24	Effect of ozonation on the estrogenicity and androgenicity of oil sands process-affected water. <i>Environmental Science & Environmental & Envir</i>	10.3	75
23	The impact of metallic coagulants on the removal of organic compounds from oil sands process-affected water. <i>Environmental Science & Environmental Sc</i>	10.3	93
22	Advanced treatment of liquid swine manure using physico-chemical treatment. <i>Journal of Hazardous Materials</i> , 2011 , 186, 1632-8	12.8	29
21	Treatability Study on Membrane Concentrate Containing Pesticides Using Advanced Oxidation Processes. <i>Ozone: Science and Engineering</i> , 2010 , 32, 16-24	2.4	4
20	Ozonation of oil sands process-affected water accelerates microbial bioremediation. <i>Environmental Science & Environmental Sci</i>	10.3	119
19	Degradation of a model naphthenic acid, cyclohexanoic acid, by vacuum UV (172 nm) and UV (254 nm)/H2O2. <i>Journal of Physical Chemistry A</i> , 2010 , 114, 12067-74	2.8	46
18	Kinetics and mechanism of the degradation of two pesticides in aqueous solutions by ozonation. <i>Chemosphere</i> , 2010 , 78, 557-62	8.4	64
17	Ozonation attenuates the steroidogenic disruptive effects of sediment free oil sands process water in the H295R cell line. <i>Chemosphere</i> , 2010 , 80, 578-84	8.4	70
16	PIV/PLIF Study of Impinging Jet Ozone Bubble Column with Mixing Nozzles. <i>Ozone: Science and Engineering</i> , 2010 , 32, 99-112	2.4	2
15	Development of a Protocol for the Determination of the Ultraviolet Sensitivity of Microorganisms Suspended in Air. <i>Aerosol Science and Technology</i> , 2009 , 43, 284-289	3.4	7
14	Membrane concentrate management options: a comprehensive critical reviewA paper submitted to the Journal of Environmental Engineering and Science <i>Canadian Journal of Civil Engineering</i> , 2009 , 36, 1107-1119	1.3	62
13	Ozonation and Advanced Oxidation Treatment of Emerging Organic Pollutants in Water and Wastewater. <i>Ozone: Science and Engineering</i> , 2008 , 30, 21-26	2.4	161
12	Kinetics of Estrone Ozone/Hydrogen Peroxide Advanced Oxidation Treatment. <i>Ozone: Science and Engineering</i> , 2008 , 30, 249-255	2.4	12
11	Effect of watershed subdivision on water-phase phosphorus modelling: An artificial neural network modelling application. <i>Journal of Environmental Engineering and Science</i> , 2008 , 7, 95-108	0.8	7
10	Impinging-Jet Ozone Bubble Column Modeling: Hydrodynamics, Gas Hold-up, Bubble Characteristics, and Ozone Mass Transfer. <i>Ozone: Science and Engineering</i> , 2007 , 29, 245-259	2.4	5
9	Degradation of Endocrine Disrupting Chemicals by Ozone/AOPs. <i>Ozone: Science and Engineering</i> , 2007 , 29, 153-176	2.4	75

LIST OF PUBLICATIONS

8	Artificial Neural Networks Modeling of Ozone Bubble Columns: Mass Transfer Coefficient, Gas Hold-Up, and Bubble Size. <i>Ozone: Science and Engineering</i> , 2007 , 29, 343-352	2.4	22
7	Degradation of Aqueous Pharmaceuticals by Ozonation and Advanced Oxidation Processes: A Review. <i>Ozone: Science and Engineering</i> , 2006 , 28, 353-414	2.4	672
6	Oxidation of resin and fatty acids by ozone: kinetics and toxicity study. Water Research, 2006, 40, 392-4	00 2.5	32
5	Aqueous Pesticide Degradation by Ozonation and Ozone-Based Advanced Oxidation Processes: A Review (Part II). <i>Ozone: Science and Engineering</i> , 2005 , 27, 173-202	2.4	101
4	Aqueous Pesticide Degradation by Ozonation and Ozone-Based Advanced Oxidation Processes: A Review (Part I). <i>Ozone: Science and Engineering</i> , 2005 , 27, 83-114	2.4	142
3	Comparing Different Designs and Scales of Bubble Columns for Their Effectiveness in Treating Kraft Pulp Mill Effluents. <i>Ozone: Science and Engineering</i> , 2002 , 24, 307-320	2.4	6
2	Maximizing the Enhanced Ozone Oxidation of Kraft Pulp Mill Effluents in an Impinging-Jet Bubble Column. <i>Ozone: Science and Engineering</i> , 2001 , 23, 479-493	2.4	16
1	Designing Ozone Bubble Columns: A Spreadsheet Approach to Axial Dispersion Model. <i>Ozone:</i> Science and Engineering, 2001 , 23, 369-384	2.4	5