Juan MartÃ-nez-Pastor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8944364/publications.pdf

Version: 2024-02-01

247 papers

5,549 citations

66343 42 h-index 62 g-index

251 all docs

251 docs citations

times ranked

251

7307 citing authors

#	Article	IF	CITATIONS
1	White light emission from lead-free mixed-cation doped Cs ₂ SnCl ₆ nanocrystals. Nanoscale, 2022, 14, 1468-1479.	5.6	29
2	Molecularly imprinted nanocomposites of CsPbBr ₃ nanocrystals: an approach towards fast and selective gas sensing of explosive taggants. Journal of Materials Chemistry C, 2022, 10, 1754-1766.	5.5	24
3	Suppressing the Formation of High <i>n</i> -Phase and 3D Perovskites in the Fabrication of Ruddlesden–Popper Perovskite Thin Films by Bulky Organic Cation Engineering. Chemistry of Materials, 2022, 34, 3076-3088.	6.7	13
4	Luminescent CdSe Quantum Dot Arrays for Rapid Sensing of Explosive Taggants. ACS Applied Nano Materials, 2022, 5, 6717-6725.	5.0	10
5	Directional and Polarized Lasing Action on Pbâ€free FASnI ₃ Integrated in Flexible Optical Waveguides. Advanced Optical Materials, 2022, 10, .	7.3	8
6	Preparation and processing of nanocomposites of all-inorganic lead halide perovskite nanocrystals., $2021, 19-93.$		O
7	Enhanced optical response of InSe nanosheet devices decorated with CsPbX3 (XÂ=Âl, Br) perovskite nanocrystals. Applied Surface Science, 2021, 536, 147939.	6.1	9
8	Out-of-plane trion emission in monolayer WSe2 revealed by whispering gallery modes of dielectric microresonators. Communications Materials, $2021, 2, .$	6.9	11
9	Molecularly Imprinted Silver Nanocomposites for Explosive Taggant Sensing. ACS Applied Polymer Materials, 2021, 3, 2960-2970.	4.4	17
10	Inhomogeneous Broadening of Photoluminescence Spectra and Kinetics of Nanometer-Thick (Phenethylammonium) < sub > 2 < /sub > Pbl < sub > 4 < /sub > Perovskite Thin Films: Implications for Optoelectronics. ACS Applied Nano Materials, 2021, 4, 6170-6177.	5.0	12
11	Recycled Photons Traveling Several Millimeters in Waveguides Based on CsPbBr ₃ Perovskite Nanocrystals. Advanced Optical Materials, 2021, 9, 2100807.	7.3	7
12	Lead halide perovskite nanocrystals: optical properties and nanophotonics. , 2021, , .		0
13	Extrinsic Effects on the Optical Properties of Surface Color Defects Generated in Hexagonal Boron Nitride Nanosheets. ACS Applied Materials & Samp; Interfaces, 2021, 13, 46105-46116.	8.0	14
14	Homogeneous and inhomogeneous broadening in single perovskite nanocrystals investigated by micro-photoluminescence. Journal of Luminescence, 2021, 240, 118453.	3.1	18
15	Effect of alkali metal nitrate treatment on the optical properties of CsPbBr3 nanocrystal films. Materials Letters, 2021, 305, 130835.	2.6	5
16	Ligand-Length Modification in CsPbBr3 Perovskite Nanocrystals and Bilayers with PbS Quantum Dots for Improved Photodetection Performance. Nanomaterials, 2020, 10, 1297.	4.1	19
17	Two-Dimensional Indium Selenide for Sulphur Vapour Sensing Applications. Nanomaterials, 2020, 10, 1396.	4.1	4
18	Role of Self-Absorption in the Photoluminescence Waveguided along CsPbBr3 Perovskite Nanocrystals Thin Films. , 2020, , .		0

#	Article	IF	Citations
19	Purcell Enhancement and Wavelength Shift of Emitted Light by CsPbI ₃ Perovskite Nanocrystals Coupled to Hyperbolic Metamaterials. ACS Photonics, 2020, 7, 3152-3160.	6.6	22
20	Recent advances in synthesis, surface chemistry of cesium lead-free halide perovskite nanocrystals and their potentialÂapplications. , 2020, , 157-228.		2
21	Niechanisms of Spontaneous and Amplified Spontaneous Emission in <mmi:math display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>CH</mml:mi><mml:mn>3</mml:mn></mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mmi:math>	ni ₃⅓ H <td>mboni><mm< td=""></mm<></td>	mboni> <mm< td=""></mm<>
22	Enhanced Nonlinear Optical Coefficients of MAPbI3 Thin Films by Bismuth Doping. Journal of Physical Chemistry Letters, 2020, 11, 2188-2194.	4.6	15
23	All optical switching of a single photon stream by excitonic depletion. Communications Physics, 2020, 3, .	5. 3	8
24	Interpretation of the photoluminescence decay kinetics in metal halide perovskite nanocrystals and thin polycrystalline films. Journal of Luminescence, 2020, 221, 117092.	3.1	30
25	Enhanced nanoscopy of individual CsPbBr3 perovskite nanocrystals using dielectric sub-micrometric antennas. APL Materials, 2020, 8, 021109.	5.1	9
26	Short Photoluminescence Lifetimes in Vacuum-Deposited CH ₃ NH ₃ Pbl ₃ Perovskite Thin Films as a Result of Fast Diffusion of Photogenerated Charge Carriers. Journal of Physical Chemistry Letters, 2019, 10, 5167-5172.	4.6	24
27	Optical Contrast and Raman Spectroscopy Techniques Applied to Few-Layer 2D Hexagonal Boron Nitride. Nanomaterials, 2019, 9, 1047.	4.1	16
28	Amplified Spontaneous Emission in Thin Films of CsPbX ₃ Perovskite Nanocrystals., 2019,,.		1
29	Single-Exciton Amplified Spontaneous Emission in Thin Films of CsPbX ₃ (X = Br, I) Perovskite Nanocrystals. Journal of Physical Chemistry Letters, 2019, 10, 6389-6398.	4.6	46
30	Enhancing the photocatalytic properties of PbS QD solids: the ligand exchange approach. Nanoscale, 2019, 11, 1978-1987.	5 . 6	56
31	Optical Amplification in Hollow-Core Negative-Curvature Fibers Doped with Perovskite CsPbBr3 Nanocrystals. Nanomaterials, 2019, 9, 868.	4.1	5
32	Ultrafast Carrier Redistribution in Single InAs Quantum Dots Mediated by Wetting-Layer Dynamics. Physical Review Applied, 2019, 11, .	3.8	3
33	Outstanding nonlinear optical properties of methylammonium- and Cs-PbX3 (X = Br, I, and Br–I) perovskites: Polycrystalline thin films and nanoparticles. APL Materials, 2019, 7, .	5.1	53
34	Inhibition of light emission from the metastable tetragonal phase at low temperatures in island-like films of lead iodide perovskites. Nanoscale, 2019, 11, 22378-22386.	5 . 6	4
35	Structural characterization of bulk and nanoparticle lead halide perovskite thin films by (S)TEM techniques. Nanotechnology, 2019, 30, 135701.	2.6	5
36	Stroboscopic Space Tag for Optical Time-Resolved Measurements with a Charge Coupled Device Detector. ACS Photonics, 2019, 6, 181-188.	6.6	3

#	Article	IF	Citations
37	Integrated Optical Amplifier–Photodetector on a Wearable Nanocellulose Substrate. Advanced Optical Materials, 2018, 6, 1800201.	7.3	24
38	Tuning optical/electrical properties of 2D/3D perovskite by the inclusion of aromatic cation. Physical Chemistry Chemical Physics, 2018, 20, 30189-30199.	2.8	22
39	Highly Anisotropic Wave Propagation in All-Dielectric Active Waveguides. , 2018, , .		O
40	Polymer Halide Perovskites-Waveguides Integrated in Nanocellulose as a Wearable Amplifier-Photodetector System. , 2018, , .		2
41	Crystalline-Size Dependence of Dual Emission Peak on Hybrid Organic Lead-Iodide Perovskite Films at Low Temperatures. Journal of Physical Chemistry C, 2018, 122, 22717-22727.	3.1	7
42	Charge Transport in Trap-Sensitized Infrared PbS Quantum-Dot-Based Photoconductors: Pros and Cons. Nanomaterials, 2018, 8, 677.	4.1	23
43	Toward Metal Halide Perovskite Nonlinear Photonics. Journal of Physical Chemistry Letters, 2018, 9, 5612-5623.	4. 6	73
44	Nitrogen effect on spin-coated ZnO-based p–n homojunctions: structural, optical and electrical characteristics. Journal of Materials Science: Materials in Electronics, 2018, 29, 12690-12699.	2.2	2
45	Structural and chemical characterization of CdSe-ZnS core-shell quantum dots. Applied Surface Science, 2018, 457, 93-97.	6.1	22
46	Optical Optimization of the TiO ₂ Mesoporous Layer in Perovskite Solar Cells by the Addition of SiO ₂ Nanoparticles. ACS Omega, 2018, 3, 9798-9804.	3.5	18
47	Trap-Limited Dynamics of Excited Carriers and Interpretation of the Photoluminescence Decay Kinetics in Metal Halide Perovskites. Journal of Physical Chemistry Letters, 2018, 9, 4955-4962.	4.6	46
48	A fluorescent layered oxalato-based canted antiferromagnet. Dalton Transactions, 2018, 47, 11909-11916.	3.3	4
49	Engineering light emission of two-dimensional materials in both the weak and strong coupling regimes. Nanophotonics, 2018, 7, 253-267.	6.0	20
50	Circularly Polarized Emission from Ensembles of InGaAs/GaAs Quantum Rings. Silicon, 2017, 9, 689-693.	3.3	0
51	Excitonic complexes in GaN/(Al,Ga)N quantum dots. Journal of Physics Condensed Matter, 2017, 29, 105302.	1.8	8
52	Optical contrast of 2D InSe on SiO ₂ /Si and transparent substrates using bandpass filters. Nanotechnology, 2017, 28, 115706.	2.6	18
53	Propagation length enhancement of surface plasmon polaritons in gold nano-/micro-waveguides by the interference with photonic modes in the surrounding active dielectrics. Nanophotonics, 2017, 6, 1109-1120.	6.0	19
54	Multilayers of CdSe/CdS/ZnCdS Core/Wings/Shell Nanoplatelets Integrated in a Polymer Waveguide. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23, 1-8.	2.9	9

#	Article	lF	CITATIONS
55	Delayed Luminescence in Lead Halide Perovskite Nanocrystals. Journal of Physical Chemistry C, 2017, 121, 13381-13390.	3.1	148
56	Quantum size confinement in gallium selenide nanosheets: band gap tunability versus stability limitation. Nanotechnology, 2017, 28, 175701.	2.6	21
57	Efficient Optical Amplification in a Sandwich-Type Active-Passive Polymer Waveguide Containing Perylenediimides. ACS Photonics, 2017, 4, 114-120.	6.6	24
58	In-situ synthesis of thiophene-based multifunctional polymeric networks with tunable conductivity and high photolithographic performance. Polymer, 2017, 108, 413-422.	3.8	8
59	Enhancement of the Performance of Perovskite Solar Cells, LEDs, and Optical Amplifiers by Antiâ€6olvent Additive Deposition. Advanced Materials, 2017, 29, 1604056.	21.0	63
60	Purcell-enhancement of the radiative PL decay in perylenediimides by coupling with silver nanoparticles into waveguide modes. Applied Physics Letters, $2017,111,$	3.3	9
61	Hydrodynamic IL10 Gene Transfer in Human Colon. Inflammatory Bowel Diseases, 2017, 23, 1360-1370.	1.9	1
62	Optimization of semiconductor halide perovskite layers to implement waveguide amplifiers. , 2017, , .		0
63	Single step deposition of an interacting layer of a perovskite matrix with embedded quantum dots. Nanoscale, 2016, 8, 14379-14383.	5.6	29
64	Nanotexturing To Enhance Photoluminescent Response of Atomically Thin Indium Selenide with Highly Tunable Band Gap. Nano Letters, 2016, 16, 3221-3229.	9.1	155
65	Halide perovskite amplifiers integrated in polymer waveguides. , 2016, , .		0
66	Strongly-coupled PbS QD solids by doctor blading for IR photodetection. RSC Advances, 2016, 6, 80201-80212.	3.6	25
67	All-Optical Fiber Hanbury Brown & Dot. Scientific Reports, 2016, 6, 27214.	3.3	30
68	Continuous Broadband MWP True-Time Delay With PbS-PMMA and PbS-SU8 Waveguides. IEEE Photonics Technology Letters, 2016, 28, 1657-1660.	2.5	3
69	Tunable light emission by exciplex state formation between hybrid halide perovskite and core/shell quantum dots: Implications in advanced LEDs and photovoltaics. Science Advances, 2016, 2, e1501104.	10.3	66
70	Parallel Recording of Single Quantum Dot Optical Emission Using Multicore Fibers. IEEE Photonics Technology Letters, 2016, 28, 1257-1260.	2.5	4
71	NANOPHOTONICS LABORATORY TEACHING EXPERIMENTS OPEN TO SENIOR UNDERGRADUATE STUDENTS AND GRADUATE STUDENTS. , 2016, , .		0
72	Polymer/Perovskite Amplifying Waveguides for Active Hybrid Silicon Photonics. Advanced Materials, 2015, 27, 6157-6162.	21.0	83

#	Article	IF	Citations
73	High spatial resolution mapping of individual and collective localized surface plasmon resonance modes of silver nanoparticle aggregates: correlation to optical measurements. Nanoscale Research Letters, 2015, 10, 1024.	5.7	12
74	Facile laser-assisted synthesis of inorganic nanoparticles covered by a carbon shell with tunable luminescence. RSC Advances, 2015, 5, 50604-50610.	3.6	25
75	Fabrication and characterization of near thresholdless lasers at room temperature. , 2015, , .		O
76	Integration of solution processed materials in polymer waveguides. , 2015, , .		0
77	MWP true time delay implemented in PbS-SU8 waveguides. , 2015, , .		O
78	Mapping the plasmonic response of gold nanoparticles embedded in TiO ₂ thin films. Nanotechnology, 2015, 26, 405702.	2.6	3
79	Optical properties of an exciton bound to an ionized impurity in ZnO/SiO2 quantum dots. Solid State Communications, 2015, 209-210, 33-37.	1.9	10
80	UV-patternable nanocomposite containing CdSe and PbS quantum dots as miniaturized luminescent chemo-sensors. RSC Advances, 2015, 5, 19874-19883.	3.6	16
81	Thickness identification of atomically thin InSe nanoflakes on SiO2/Si substrates by optical contrast analysis. Applied Surface Science, 2015, 354, 453-458.	6.1	29
82	MWP phase shifters integrated in PbS-SU8 waveguides. Optics Express, 2015, 23, 14351.	3.4	11
83	Near thresholdless laser operation at room temperature. Optica, 2015, 2, 66.	9.3	48
84	Free spectral range enlargement by selective suppression of optical modes in photonic crystal L7 microcavities. , $2015, \dots$		1
85	Au–ZnO Nanocomposite Films for Plasmonic Photocatalysis. Advanced Materials Interfaces, 2015, 2, 1500156.	3.7	51
86	Polymer waveguide couplers based on metal nanoparticle–polymer nanocomposites. Nanotechnology, 2015, 26, 475201.	2.6	12
87	Towards solar cell emitters based on colloidal Si nanocrystals. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 156-161.	1.8	3
88	Polarimetric Plasmonic Sensing with Bowtie Nanoantenna Arrays. Plasmonics, 2015, 10, 703-711.	3.4	14
89	Photonic Crystalâ€Driven Spectral Concentration for Upconversion Photovoltaics. Advanced Optical Materials, 2015, 3, 568-574.	7.3	26
90	Efficient excitation of photoluminescence in a two-dimensional waveguide consisting of a quantum dot-polymer sandwich-type structure. Optics Letters, 2014, 39, 4962.	3.3	17

#	Article	IF	Citations
91	Subâ€critical InAs layers on metamorphic InGaAs for single quantum dot emission at telecom wavelengths. Crystal Research and Technology, 2014, 49, 540-545.	1.3	3
92	Bowtie plasmonic nanoantenna arrays for polarimetric optical biosensing., 2014,,.		11
93	Time resolved emission at $1.3\hat{l}^1\!\!/\!4$ m of a single InAs quantum dot by using a tunable fibre Bragg grating. Nanotechnology, 2014, 25, 035204.	2.6	11
94	Plasmonic optical sensors printed from Ag–PVA nanoinks. Journal of Materials Chemistry C, 2014, 2, 908-915.	5.5	37
95	Electronic structure, optical properties, and lattice dynamics in atomically thin indium selenide flakes. Nano Research, 2014, 7, 1556-1568.	10.4	160
96	Colloidal Quantum Dots-PMMA Waveguides as Integrable Microwave Photonic Phase Shifters. IEEE Photonics Technology Letters, 2014, 26, 402-404.	2.5	10
97	Plasmonic versus catalytic effect of gold nanoparticles on mesoporous TiO2 electrodes for water splitting. Electrochimica Acta, 2014, 144, 64-70.	5.2	46
98	Photon plasmon coupling in nanocomposite plasmonic waveguides. , 2014, , .		1
99	Two-Color Single-Photon Emission from InAs Quantum Dots: Toward Logic Information Management Using Quantum Light. Nano Letters, 2014, 14, 456-463.	9.1	16
100	Metasurfaces for colour printing. , 2014, , .		1
101	Quantum-Dot Double Layer Polymer Waveguides by Evanescent Light Coupling. Journal of Lightwave Technology, 2013, 31, 2515-2525.	4.6	25
102	The effect of quantum size confinement on the optical properties of PbSe nanocrystals as a function of temperature and hydrostatic pressure. Nanotechnology, 2013, 24, 205701.	2.6	37
103	Exciton and multiexciton optical properties of single InAs/GaAs site-controlled quantum dots. Applied Physics Letters, 2013, 103, .	3.3	8
104	Color Tuning and White Light by Dispersing CdSe, CdTe, and CdS in PMMA Nanocomposite Waveguides. IEEE Photonics Journal, 2013, 5, 2201412-2201412.	2.0	21
105	Lateral induced dipole moment and polarizability of excitons in a ZnO single quantum disk. Journal of Applied Physics, 2013, 113, 064314.	2.5	15
106	Laser ablation of a silicon target in chloroform: formation of multilayer graphite nanostructures. Journal Physics D: Applied Physics, 2013, 46, 135301.	2.8	12
107	Three-Dimensional Axisymmetric Cloak Based on the Cancellation of Acoustic Scattering from a Sphere. Physical Review Letters, 2013, 110, 124301.	7.8	138
108	Novel patternable and conducting metal-polymer nanocomposites: a step towards advanced mutlifunctional materials. , $2013, \ldots$		1

#	Article	IF	CITATIONS
109	Metal-polymer nanocomposite resist: a step towards in-situ nanopatterns metallization. Proceedings of SPIE, 2013, , .	0.8	4
110	Plasmonic layers based on Au-nanoparticle-doped TiO ₂ for optoelectronics: structural and optical properties. Nanotechnology, 2013, 24, 065202.	2.6	29
111	Plasmonic Communications: Light on a Wire. Optics and Photonics News, 2013, 24, 28.	0.5	98
112	FORMATION REGULARITIES OF SERS-ACTIVE SUBSTRATES BASED ON SILVER-COATED MESOPOROUS SILICON. , 2013, , .		2
113	Real-time polarimetric optical sensor using macroporous alumina membranes. Optics Letters, 2013, 38, 1058.	3.3	20
114	Properties of silicon integrated photonic lenses: bandwidth, chromatic aberration, and polarization dependence. Optical Engineering, 2013, 52, 091710.	1.0	6
115	The effect of high-In content capping layers on low-density bimodal-sized InAs quantum dots. Journal of Applied Physics, 2013, 113, 194306.	2.5	7
116	Integrated microwave photonic phase-shifters based on colloidal quantum dots-PMMA nanocomposite waveguides. , 2013, , .		0
117	Excitation power dependence of the Purcell effect in photonic crystal microcavity lasers with quantum wires. Applied Physics Letters, 2013, 102, 201105.	3.3	13
118	Light coupling from active polymer layers to hybrid dielectric-plasmonic waveguides. , 2013, , .		1
119	Photoconductivity and optical properties of silicon coated by thin TiO ₂ film <i>iin situ</i> doped by Au nanoparticles. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 687-694.	1.8	8
120	Real-time polarimetric biosensing using macroporous alumina membranes. Proceedings of SPIE, 2013, , .	0.8	2
121	Experimental demonstration of a three-dimensional acoustic cloak based on a cancellation effect. Proceedings of Meetings on Acoustics, 2013, , .	0.3	0
122	Dielectric and plasmonic waveguides based on quantum dots embedded in polymers. Optica Pura Y Aplicada, 2013, 46, 303-308.	0.1	0
123	Purcell effect in photonic crystal microcavities embedding InAs/InP quantum wires. Optics Express, 2012, 20, 7901.	3.4	27
124	Surface plasmon-polariton amplifiers. , 2012, , .		2
125	Chip-to-chip plasmonic interconnects and the activities of EU project NAVOLCHI., 2012, , .		2
126	Production of Nanometer-Size GaAs Nanocristals by Nanosecond Laser Ablation in Liquid. Journal of Nanoscience and Nanotechnology, 2012, 12, 6774-6778.	0.9	24

#	Article	IF	CITATIONS
127	Plasmon dumping in Ag-nanoparticles/polymer composite for optical detection of amines and thiols vapors. , 2012, , .		3
128	Phase-Sensitive Detection for Optical Sensing With Porous Silicon. IEEE Photonics Journal, 2012, 4, 986-995.	2.0	16
129	Size dependent carrier thermal escape and transfer in bimodally distributed self assembled InAs/GaAs quantum dots. Journal of Applied Physics, 2012, 111, .	2.5	19
130	Molecular-mediated assembly of silver nanoparticles with controlled interparticle spacing and chain length. Journal of Materials Chemistry, 2012, 22, 22204.	6.7	24
131	Polymer/QDs Nanocomposites for Waveguiding Applications. Journal of Nanomaterials, 2012, 2012, 1-9.	2.7	43
132	Patterning of Conducting Polymers Using UV Lithography: The in-Situ Polymerization Approach. Journal of Physical Chemistry C, 2012, 116, 17547-17553.	3.1	18
133	Temperature Sensor Based on Colloidal Quantum Dots–PMMA Nanocomposite Waveguides. IEEE Sensors Journal, 2012, 12, 3069-3074.	4.7	26
134	Highly-sensitive anisotropic porous silicon based optical sensors. Proceedings of SPIE, 2012, , .	0.8	7
135	Colloidal QDs-polymer nanocomposites. Proceedings of SPIE, 2012, , .	0.8	0
136	Effect of a lateral electric field on an off-center single dopant confined in a thin quantum disk. Journal of Applied Physics, 2012, 111, .	2.5	28
137	Simulation of surface-modified porous silicon photonic crystals for biosensing applications. Photonics and Nanostructures - Fundamentals and Applications, 2012, 10, 304-311.	2.0	16
138	Synthesis and Physical Stability of Novel Au-Ag@SiO ₂ Alloy Nanoparticles. Nanoscience and Nanotechnology, 2012, 2, 1-7.	1.0	17
139	Different strategies towards the deterministic coupling of a single Quantum Dot to a photonic crystal cavity mode. , 2011 , , .		0
140	Acoustic cloak for airborne sound by inverse design. Applied Physics Letters, 2011, 99, .	3.3	72
141	Silicon Nanocrystals Produced by Nanosecond Laser Ablation in an Organic Liquid. Journal of Physical Chemistry C, 2011, 115, 5147-5151.	3.1	66
142	Localization effects on recombination dynamics in InAs/InP self-assembled quantum wires emitting at 1.5 <i>μ</i> m. Journal of Applied Physics, 2011, 110, .	2.5	11
143	Birefringent porous silicon membranes for optical sensing. Optics Express, 2011, 19, 26106.	3.4	39
144	Photoluminescence waveguiding in CdSe and CdTe QDs–PMMA nanocomposite films. Nanotechnology, 2011, 22, 435202.	2.6	66

#	Article	IF	Citations
145	Photoswitchable bactericidal effects from novel silica-coated silver nanoparticles. Proceedings of SPIE, 2011, , .	0.8	1
146	Formation and Emission Properties of Single InGaAsâ̂•GaAs Quantum Dots and Pairs Grown by Droplet Epitaxy. AIP Conference Proceedings, 2011, , .	0.4	0
147	Optical properties of acceptor–exciton complexes in ZnO/SiO2 quantum dots. Solid State Communications, 2011, 151, 1355-1358.	1.9	5
148	Novel Method of Preparation of Goldâ€Nanoparticleâ€Doped TiO ₂ and SiO ₂ Plasmonic Thin Films: Optical Characterization and Comparison with Maxwell–Garnett Modeling. Advanced Functional Materials, 2011, 21, 3502-3507.	14.9	55
149	MBE growth and properties of lowâ€density InAs/GaAs quantum dot structures. Crystal Research and Technology, 2011, 46, 801-804.	1.3	6
150	Energy of excitons and acceptor–exciton complexes to explain the origin of ultraviolet photoluminescence in ZnO quantum dots embedded in a SiO2 matrix. Solid State Communications, 2011, 151, 822-825.	1.9	7
151	Random population model to explain the recombination dynamics in single InAs/GaAs quantum dots under selective optical pumping. New Journal of Physics, 2011, 13, 023022.	2.9	24
152	Charge control in laterally coupled double quantum dots. Physical Review B, 2011, 84, .	3.2	27
153	Single quantum dot emission at telecom wavelengths from metamorphic InAs/InGaAs nanostructures grown on GaAs substrates. Applied Physics Letters, 2011, 98, .	3.3	50
154	Thermal activated carrier transfer between InAs quantum dots in very low density samples. Journal of Physics: Conference Series, 2010, 210, 012015.	0.4	0
155	Emission properties of single InAs/GaAs quantum dot pairs and molecules grown in GaAs nanoholes. Journal of Physics: Conference Series, 2010, 210, 012028.	0.4	1
156	Au-PVA Nanocomposite Negative Resist for One-Step Three-Dimensional e-Beam Lithography. Langmuir, 2010, 26, 2825-2830.	3.5	35
157	Resist-based silver nanocomposites synthesized by lithographic methods. Microelectronic Engineering, 2010, 87, 1147-1149.	2.4	21
158	On the anomalous Stark effect in a thin disc-shaped quantum dot. Journal of Physics Condensed Matter, 2010, 22, 375301.	1.8	24
159	Laser-Ablation-Induced Synthesis of SiO ₂ -Capped Noble Metal Nanoparticles in a Single Step. Langmuir, 2010, 26, 7458-7463.	3.5	77
160	Genetic algorithm designed silicon integrated photonic lens operating at 1550 nm. Applied Physics Letters, 2010, 97, 071115.	3.3	12
161	Ag and Au/DNQ-novolac nanocomposites patternable by ultraviolet lithography: a fast route to plasmonic sensor microfabrication. Journal of Materials Chemistry, 2010, 20, 7436.	6.7	34
162	Electrical control of a laterally ordered InAs/InP quantum dash array. Nanotechnology, 2009, 20, 475202.	2.6	6

#	Article	IF	CITATIONS
163	Development of self-assembled bacterial cellulose–starch nanocomposites. Materials Science and Engineering C, 2009, 29, 1098-1104.	7.3	158
164	Continuous-wave dual-wavelength operation at 1062 and 1338nm in Nd3+:YAl3(BO3)4 and observation of yellow laser light generation at 592nm by their self-sum-frequency-mixing. Optics Communications, 2009, 282, 1619-1621.	2.1	16
165	SNOM study of ferroelectric domains in doped <mml:math altimg="si1.gif" display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mstyle mathvariant="normal"><mml:mi>LiNbO</mml:mi></mml:mstyle></mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mm< td=""><td>1.2 ın><td>3 mrow></td></td></mm<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:msub></mml:math>	1.2 ın> <td>3 mrow></td>	3 mrow>
166	Optical properties of different polymer thin films containing in situ synthesized Ag and Au nanoparticles. New Journal of Chemistry, 2009, 33, 1720.	2.8	39
167	Localized surface plasmon resonance sensor based on Ag-PVA nanocomposite thin films. Journal of Materials Chemistry, 2009, 19, 9233.	6.7	59
168	Scalable heterogeneous synthesis of metallic nanoparticles and aggregates with polyvinyl alcohol. New Journal of Chemistry, 2009, 33, 913.	2.8	37
169	Single Photon Emission from Site-Controlled InAs Quantum Dots Grown on GaAs(001) Patterned Substrates. ACS Nano, 2009, 3, 1513-1517.	14.6	50
170	InGaAs Quantum Dots Coupled to a Reservoir of Nonequilibrium Free Carriers. IEEE Journal of Quantum Electronics, 2009, 45, 1121-1128.	1.9	28
171	Competition between carrier recombination and tunneling in quantum dots and rings under the action of electric fields. Superlattices and Microstructures, 2008, 43, 582-587.	3.1	3
172	Exciton, biexciton and trion recombination dynamics in a single quantum dot under selective optical pumping. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 2100-2103.	2.7	9
173	A novel method of nanocrystal fabrication based on laser ablation in liquid environment. Superlattices and Microstructures, 2008, 43, 487-493.	3.1	37
174	Optical switching of quantum states inside self-assembled quantum dots. Superlattices and Microstructures, 2008, 43, 494-499.	3.1	1
175	Temperature dependent optical properties of stacked InGaAs/GaAs quantum rings. Materials Science and Engineering C, 2008, 28, 887-890.	7.3	1
176	High-resolution electron-beam patternable nanocomposite containing metal nanoparticles for plasmonics. Nanotechnology, 2008, 19, 355308.	2.6	75
177	Selective optical pumping of charged excitons in unintentionally doped InAs quantum dots. Nanotechnology, 2008, 19, 145711.	2.6	16
178	Near-field scanning optical microscopy to study nanometric structural details of LiNbO3 Zn-diffused channel waveguides. Journal of Applied Physics, 2008, 104, 094313.	2.5	2
179	Effect of reactive ion beam etching on the photoluminescence of CdTe epitaxial layers. Journal of Applied Physics, 2008, 103, 056108.	2.5	2
180	Exciton Gas Compression and Metallic Condensation in a Single Semiconductor Quantum Wire. Physical Review Letters, 2008, 101, 067405.	7.8	20

#	Article	IF	CITATIONS
181	Morphological Characterisation of Bacterial Cellulose-Starch Nanocomposites. Polymers and Polymer Composites, 2008, 16, 181-185.	1.9	54
182	Continuous wave dual-wavelength operation at 1048 and 1386 nm in Nd $<$ sup $>$ 3+ $<$ /sup $>$:LaBGeO $<$ inf $>$ 5 $<$ /inf $>$ for yellow laser light generation. , 2007, , .		1
183	Gain Dynamics after Ultrashort Pulse Trains in Quantum Dot based Semiconductor Optical Amplifiers. , 2007, , .		2
184	Photonic effect study on polystyrene 3D-photonic crystals at near-field range: dependence on the wavelength and on the lattice parameter., 2007,,.		0
185	Isolated self-assembled InAs/InP(001) quantum wires obtained by controlling the growth front evolution. Nanotechnology, 2007, 18, 035604.	2.6	21
186	Formation and optical characterization of single InAs quantum dots grown on GaAs nanoholes. Applied Physics Letters, 2007, 91, 163104.	3.3	39
187	Ultrafast Gain Recovery in Quantum Dot based Semiconductor Optical Amplifiers. , 2007, , .		O
188	Scanning near-field optical microscopy (SNOM) of lithium niobate aperiodically poled during growth. , 2007, , .		О
189	Complete ground state gain recovery after ultrashort double pulses in quantum dot based semiconductor optical amplifier. Applied Physics Letters, 2007, 90, 033508.	3.3	90
190	Initial stages of self-assembled InAs/InP(001) quantum wire formation. Journal of Crystal Growth, 2007, 301-302, 705-708.	1.5	4
191	Pressure dependence of photoluminescence of InAs/InP self-assembled quantum wires. Physica Status Solidi (B): Basic Research, 2007, 244, 59-64.	1.5	1
192	Scanning probe microscopies applied to the study of the domain wall in a ferroelectric crystal. Journal of Microscopy, 2007, 226, 133-139.	1.8	4
193	Continuous-Wave Yellow Laser Based on Nd-Doped Periodically Poled Lithium Niobate. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13, 750-755.	2.9	12
194	Oscillator strength reduction induced by external electric fields in self-assembled quantum dots and rings. Physical Review B, 2007, 75, .	3.2	60
195	Effect of carrier transfer on the PL intensity in self-assembled In (Ga) As/GaAs quantum rings. EPJ Applied Physics, 2006, 35, 159-163.	0.7	10
196	Size filtering effect in vertical stacks of In(Ga)As/GaAs self-assembled quantum rings. Materials Science and Engineering C, 2006, 26, 297-299.	7.3	2
197	Lateral carrier tunnelling in stacked In(Ga)As/GaAs quantum rings. European Physical Journal B, 2006, 54, 217-223.	1.5	13
198	Shape dependent electronic structure and exciton dynamics in small In(Ga)As quantum dots. European Physical Journal B, 2006, 54, 471-477.	1.5	11

#	Article	IF	Citations
199	Different regimes of electronic coupling and their influence on exciton recombination in vertically stacked InAs/InP quantum wires. Journal Physics D: Applied Physics, 2006, 39, 4940-4947.	2.8	5
200	Scanning x-ray excited optical luminescence microscopy in GaN. Applied Physics Letters, 2006, 89, 221913.	3.3	50
201	InAsâ^•InP single quantum wire formation and emission at 1.5μm. Applied Physics Letters, 2006, 89, 233126.	3.3	11
202	Continuum and discrete excitation spectrum of single quantum rings. Physical Review B, 2005, 72, .	3.2	47
203	Size and emission wavelength control of InAsâ^•InP quantum wires. Journal of Applied Physics, 2005, 98, 033502.	2.5	25
204	Exciton recombination dynamics inInAsâ^•InPself-assembled quantum wires. Physical Review B, 2005, 71, .	3.2	17
205	Emission wavelength engineering of InAs/InP(001) quantum wires. European Physical Journal B, 2004, 40, 433-437.	1.5	12
206	Absorption spectroscopy of single InAs self-assembled quantum dots. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 21, 395-399.	2.7	10
207	Size control of InAsâ [•] InP(001) quantum wires by tailoring Pâ [•] As exchange. Applied Physics Letters, 2004, 85, 1424-1426.	3.3	38
208	Vertical stacks of small InAs/GaAs self-assembled dots: resonant and non-resonant excitation. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 17, 46-49.	2.7	8
209	Size self-filtering effect in vertical stacks of InAs/InP self-assembled quantum wires. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 17, 174-176.	2.7	3
210	Temperature dependence of the effective mobility edge and recombination dynamics of free and localized excitons in InGaP/GaAs quantum wells. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 17, 206-208.	2.7	1
211	Exciton kinetics and luminescence in disordered InxGa1â^'xP/GaAs quantum wells. Physica Status Solidi C: Current Topics in Solid State Physics, 2003, 0, 1429-1432.	0.8	2
212	Consequences of the spatial localization on the exciton recombination dynamics in InGaP/GaAs heterostructures. Surface Science, 2002, 507-510, 619-623.	1.9	3
213	Influence of the InAs coverage on the phonon-assisted recombination in InAs/GaAs quantum dots. Surface Science, 2002, 507-510, 624-629.	1.9	1
214	Carrier Recombination in InAs/GaAs Self-Assembled Quantum Dots under Resonant Excitation Conditions. Physica Status Solidi A, 2002, 190, 583-587.	1.7	2
215	Exciton Recombination in Self-Assembled InAs/GaAs Small Quantum Dots under an External Electric Field. Physica Status Solidi A, 2002, 190, 599-603.	1.7	2
216	Magneto-Excitons in Semiconductor Quantum Rings. Physica Status Solidi A, 2002, 190, 781-785.	1.7	10

#	Article	IF	CITATIONS
217	Optical studies of gap, hopping energies, and the Anderson-Hubbard parameter in the zigzag-chain compoundSrCuO2. Physical Review B, 2001, 63, .	3.2	20
218	Optical transitions and excitonic recombination in InAs/InP self-assembled quantum wires. Applied Physics Letters, 2001, 78, 4025-4027.	3.3	65
219	Band Alignments in InxGa1xP/GaAs Heterostructures Investigated by Pressure Experiments. Physica Status Solidi A, 2000, 178, 571-576.	1.7	6
220	Influence of buffer-layer surface morphology on the self-organized growth of InAs on InP(001) nanostructures. Applied Physics Letters, 2000, 76, 1104-1106.	3.3	133
221	Transmission properties at microwave frequencies of two-dimensional metallic lattices. Journal of Applied Physics, 1999, 86, 1177-1180.	2.5	1
222	Optical characterization of disordered InxGa1â^'xP alloys. Applied Physics Letters, 1998, 72, 2595-2597.	3.3	8
223	Correlation between optical properties and barrier composition in InxGa1â^xP/GaAs quantum wells. Journal of Applied Physics, 1998, 84, 6832-6840.	2.5	3
224	Excitonic recombination dynamics in shallow quantum wells. Physical Review B, 1998, 58, 7076-7085.	3.2	16
225	High accuracy Raman measurements using the Stokes and anti-Stokes lines. Journal of Applied Physics, 1997, 82, 3976-3982.	2.5	16
226	Optical study of good quality InGaP/GaAs quantum wells: Influence of the indium content around the latticeâ€matched composition. Applied Physics Letters, 1996, 68, 2111-2113.	3.3	9
227	Time-resolved photoluminescence and steady-state optical investigations of a Zn1â^'x Cd x Se/ZnSe quantum well. Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics, 1995, 17, 1435-1440.	0.4	3
228	Exciton states and relaxation dynamics in shallow quantum wells. Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics, 1995, 17, 1493-1498.	0.4	8
229	Transfer dynamics from an interface type-II heavy-hole exciton to a type-I light-hole exciton in a ZnSe/(Zn, Mn) Se heterostructure. Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics, 1995, 17, 1567-1571.	0.4	O
230	Exciton thermalization in quantum-well structures. Physical Review B, 1994, 50, 11817-11826.	3.2	83
231	The stokes shift in good quality quantum well structures. Solid State Communications, 1994, 91, 931-935.	1.9	15
232	Localization in highly strained In0.35Ga0.65As/GaAs ultrathin quantum wells. Superlattices and Microstructures, 1993, 14, 39.	3.1	8
233	Temperature dependence of exciton lifetimes in GaAs/AlxGa1â^'xAs single quantum wells. Physical Review B, 1993, 47, 10456-10460.	3.2	104
234	Influence of miniband widths and interface disorder on vertical transport in superlattices. Physical Review B, 1993, 47, 10625-10632.	3.2	8

#	Article	IF	CITATIONS
235	Well-width and aluminum-concentration dependence of the exciton binding energies in GaAs/AlxGa1â^'xAs quantum wells. Physical Review B, 1993, 47, 15755-15762.	3.2	57
236	Optical study of vertical transport inCd0.82Mn0.18Te/CdTe superlattices. Physical Review B, 1993, 48, 11871-11878.	3.2	6
237	Highâ€temperature behavior of impurities and dimensionality of the charge transport in unintentionally and tinâ€doped indium selenide. Journal of Applied Physics, 1993, 74, 3231-3237.	2.5	9
238	Above-barrier resonant transitions inAlxGa1â^xAs/AlAs/GaAs heterostructures. Physical Review B, 1993, 48, 8089-8094.	3.2	7
239	Exciton delocalization in thin double-barrier GaAs/AlAs/(Al,Ga)As quantum-well structures. Physical Review B, 1992, 46, 2239-2243.	3.2	8
240	Shallow-donor impurities in indium selenide investigated by means of far-infrared spectroscopy. Physical Review B, 1992, 46, 4607-4616.	3.2	36
241	Thermal escape of carriers out of GaAs/AlxGa1â^'xAs quantum-well structures. Physical Review B, 1992, 46, 6922-6927.	3.2	79
242	Hole polarization and slow hole-spin relaxation in ann-doped quantum-well structure. Physical Review B, 1992, 46, 7292-7295.	3.2	50
243	Three-dimensional electrons and two-dimensional electric subbands in the transport properties of tin-dopedn-type indium selenide: Polar and homopolar phonon scattering. Physical Review B, 1991, 43, 4953-4965.	3.2	61
244	Excitonic absorption and Urbach's tail in bismuth sulfide single crystals. Applied Physics A: Solids and Surfaces, 1988, 45, 125-132.	1.4	6
245	Electrical and photovoltaic properties of indiumâ€tinâ€oxide/pâ€InSe/Au solar cells. Journal of Applied Physics, 1987, 62, 1477-1483.	2.5	118
246	Transport properties of bismuth sulfide single crystals. Physical Review B, 1987, 35, 9586-9590.	3.2	49
247	Size control of self-assembled quantum wires for emission wavelength engineering. , 0, , .		0