
Marko K Matikainen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8944346/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comparison of numerical and computational aspects between two constraint-based contact methods in the description of wheel/rail contacts. Multibody System Dynamics, 2022, 54, 303-344.	1.7	4
2	Analysis of electromechanical systems based on the absolute nodal coordinate formulation. Acta Mechanica, 2022, 233, 1019-1030.	1.1	2
3	An Overview of Higher-Order Beam Elements Based on the Absolute Nodal Coordinate Formulation. Journal of Computational and Nonlinear Dynamics, 2022, 17, .	0.7	7
4	Performance review of locking alleviation methods for continuum ANCF beam elements. Nonlinear Dynamics, 2022, 109, 531-546.	2.7	12
5	Procedure for non-smooth contact for planar flexible beams with cone complementarity problem. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 2021, 235, 179-196.	0.5	2
6	Usability of finite elements based on the absolute nodal coordinate formulation for deformation analysis of the Achilles tendon. International Journal of Non-Linear Mechanics, 2021, 129, 103662.	1.4	18
7	Estimating the Characteristic Curve of a Directional Control Valve in a Combined Multibody and Hydraulic System Using an Augmented Discrete Extended Kalman Filter. Sensors, 2021, 21, 5029.	2.1	14
8	A study of contact methods in the application of large deformation dynamics in self-contact beam. Nonlinear Dynamics, 2021, 103, 581-616.	2.7	18
9	A finite element for soft tissue deformation based on the absolute nodal coordinate formulation. Acta Mechanica, 2020, 231, 1519-1538.	1.1	26
10	Cone complementarity approach for dynamic analysis of multiple pendulums. Advances in Mechanical Engineering, 2019, 11, 168781401985674.	0.8	2
11	Dynamic analysis of rotating shafts using the absolute nodal coordinate formulation. Journal of Sound and Vibration, 2019, 453, 214-236.	2.1	19
12	Inertia forces and shape integrals in the floating frame of reference formulation. Nonlinear Dynamics, 2017, 88, 1953-1968.	2.7	22
13	A Planar Beam Finite-Element Formulation With Individually Interpolated Shear Deformation. Journal of Computational and Nonlinear Dynamics, 2017, 12, .	0.7	5
14	Higher-order beam elements based on the absolute nodal coordinate formulation for three-dimensional elasticity. Nonlinear Dynamics, 2017, 88, 1075-1091.	2.7	38
15	Analysis of high-order quadrilateral plate elements based on the absolute nodal coordinate formulation for three-dimensional elasticity. Advances in Mechanical Engineering, 2017, 9, 168781401770506.	0.8	11
16	Experimental validation of flexible multibody dynamics beam formulations. Multibody System Dynamics, 2015, 34, 373-389.	1.7	21
17	A Fibre-Reinforced Poroviscoelastic Model Accurately Describes the Biomechanical Behaviour of the Rat Achilles Tendon. PLoS ONE, 2015, 10, e0126869.	1.1	20
18	Comparison of the absolute nodal coordinate and geometrically exact formulations for beams. Multibody System Dynamics, 2014, 32, 67-85.	1.7	47

MARKO K MATIKAINEN

#	Article	IF	CITATIONS
19	A study of moderately thick quadrilateral plate elements based on the absolute nodal coordinate formulation. Multibody System Dynamics, 2014, 31, 309-338.	1.7	36
20	Inclusion of Transverse Shear Deformation in a Beam Element Based on the Absolute Nodal Coordinate Formulation. Journal of Computational and Nonlinear Dynamics, 2009, 4, .	0.7	8
21	A geometrically exact beam element based onÂtheÂabsolute nodal coordinate formulation. Multibody System Dynamics, 2008, 20, 359-384.	1.7	104
22	Analysis of Stress and Strain in the Absolute Nodal Coordinate Formulation. Mechanics Based Design of Structures and Machines, 2006, 34, 409-430.	3.4	50
23	Development of Elastic Forces for a Large Deformation Plate Element Based on the Absolute Nodal Coordinate Formulation. Journal of Computational and Nonlinear Dynamics, 2006, 1, 103-108.	0.7	47
24	Numerical analysis of the magnetic shape memory effect based on the absolute nodal coordinate formulation. Acta Mechanica, 0, , 1.	1.1	2