List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8944220/publications.pdf Version: 2024-02-01

ΗΙΠΕΛΚΙ ΚΛΝΙΟ

#	Article	IF	CITATIONS
1	Spectroscopic second and third harmonic generation microscopy using a femtosecond laser source in the third near-infrared (NIR-III) optical window. Biomedical Optics Express, 2022, 13, 694.	1.5	4
2	Label-free enzymatic reaction monitoring in water-in-oil microdroplets using ultra-broadband multiplex coherent anti-Stokes Raman scattering spectroscopy. Biomedical Optics Express, 2022, 13, 1506-1515.	1.5	1
3	Calibration for a count rate-dependent time correlation function and a random noise reduction in pulsed dynamic light scattering. Analytical Sciences, 2022, 38, 607-611.	0.8	1
4	Opalescence Arising from Network Assembly in Antibody Solution. Molecular Pharmaceutics, 2022, 19, 1160-1167.	2.3	0
5	Multiplex CARS microspectroscopy in the "long-pulse―regime: where are we now?. , 2022, , .		1
6	Visualizing intra-medulla lipids in human hair using ultra-multiplex CARS, SHG, and THG microscopy. Analyst, The, 2021, 146, 1163-1168.	1.7	11
7	Visualization of water concentration distribution in human skin by ultra-multiplex coherent anti-Stokes Raman scattering (CARS) microscopy. Applied Physics Express, 2021, 14, 042010.	1.1	3
8	Visualization of intracellular lipid metabolism in brown adipocytes by time-lapse ultra-multiplex CARS microspectroscopy with an onstage incubator. Journal of Chemical Physics, 2021, 155, 125102.	1.2	5
9	Mapping the second and third order nonlinear susceptibilities in a thermally poled microimprinted niobium borophosphate glass. Optical Materials Express, 2021, 11, 3411.	1.6	3
10	Contrast-tuneable microscopy for single-shot real-time imaging. EPJ Applied Physics, 2020, 91, 30701.	0.3	0
11	Multimodal nonlinear optical imaging of <i>Caenorhabditis elegans</i> with multiplex coherent anti-Stokes Raman scattering, third-harmonic generation, second-harmonic generation, and two-photon excitation fluorescence. Applied Physics Express, 2020, 13, 072002.	1.1	7
12	Photo-induced meta-stable polar conformations in polystyrene microspheres revealed by time-resolved SHG microscopy. Applied Physics Express, 2020, 13, 052003.	1.1	4
13	Optical coherence tomography-based tissue dynamics imaging for longitudinal and drug response evaluation of tumor spheroids. Biomedical Optics Express, 2020, 11, 6231.	1.5	43
14	Quantification of ex-vivo tissue activity by polarization dynamics imaging using Jones matrix optical coherence tomography. , 2020, , .		1
15	Quantification of ex vivo tissue activity by short and long time-course analysis of multifunctional OCT signals. , 2020, , .		2
16	Multiplex coherent anti-Stokes Raman scattering highlights state of chromatin condensation in CH region. Scientific Reports, 2019, 9, 13862.	1.6	24
17	Measurement of the third order nonlinear susceptibility of paratellurite single crystal using multiplex CARS. AIP Advances, 2019, 9, 105301.	0.6	3
18	Identifying the molecular adsorption site of a single molecule junction through combined Raman and conductance studies. Chemical Science, 2019, 10, 6261-6269.	3.7	32

#	Article	IF	CITATIONS
19	Characterization of Intra/Extracellular Water States Probed by Ultrabroadband Multiplex Coherent Anti-Stokes Raman Scattering (CARS) Spectroscopic Imaging. Journal of Physical Chemistry A, 2019, 123, 3928-3934.	1.1	19
20	Good arm identification via bandit feedback. Machine Learning, 2019, 108, 721-745.	3.4	6
21	Measurement of the Third Order Nonlinear Susceptibility of a Paratellurite Single Crystal using Multiplex CARS. , 2019, , .		0
22	Ultra-multiplex CARS spectroscopic imaging with 1-millisecond pixel dwell time. OSA Continuum, 2019, 2, 1693.	1.8	16
23	Spectroscopic Imaging Using a Supercontinuum Light Source. The Review of Laser Engineering, 2019, 47, 94.	0.0	0
24	Ultrabroadband Multiplex Coherent anti-Stokes Raman Scattering (CARS) Microspectroscopy Using a CCD Camera with an InGaAs Image Intensifier. Chemistry Letters, 2018, 47, 704-707.	0.7	2
25	Mechanism of co-aggregation in a protein mixture with small additives. International Journal of Biological Macromolecules, 2018, 107, 1428-1437.	3.6	24
26	Fast epi-detected broadband multiplex CARS and SHG imaging of mouse skull cells. Biomedical Optics Express, 2018, 9, 245.	1.5	16
27	Invited Article: CARS molecular fingerprinting using sub-100-ps microchip laser source with fiber amplifier. APL Photonics, 2018, 3, .	3.0	22
28	Development of a Hyper-Raman Microspectroscopic System Using a Wavelength-tunable Laser Source. Chemistry Letters, 2018, 47, 660-663.	0.7	4
29	CARS molecular fingerprinting using a sub-nanosecond supercontinuum light source. , 2018, , .		0
30	Label-free imaging of acanthamoeba using multimodal nonlinear optical microscopy. , 2018, , .		0
31	SHC-specificity of cellular Rootletin filaments enables naÃ`ve imaging with universal conservation. Scientific Reports, 2017, 7, 39967.	1.6	24
32	Raman Microscopy: A Noninvasive Method to Visualize the Localizations of Biomolecules in the Cornea. Cornea, 2017, 36, S67-S71.	0.9	6
33	Effect of a Waterproofing Agent on the Penetration Process of Water into a Cellulose Acetate Film by Time-resolved Coherent Anti-Stokes Raman Scattering (CARS) Microspectroscopy. Chemistry Letters, 2017, 46, 833-836.	0.7	1
34	Effect of a Stretching Procedure on the Penetration Process of Water into a Cellulose Acetate Film by Coherent Anti-Stokes Raman Scattering (CARS) Microspectroscopy. Chemistry Letters, 2017, 46, 92-94.	0.7	2
35	Identification of intracellular squalene in living algae, <i>Aurantiochytrium mangrovei</i> with hyperâ€spectral coherent antiâ€Stokes Raman microscopy using a subâ€nanosecond supercontinuum laser source. Journal of Raman Spectroscopy, 2017, 48, 8-15.	1.2	16
36	Coherent anti-Stokes Raman scattering under electric field stimulation. Physical Review B, 2016, 94, .	1.1	9

#	Article	IF	CITATIONS
37	Dynamical study of the water penetration process into a cellulose acetate film studied by coherent anti-Stokes Raman scattering (CARS) microspectroscopy. Chemical Physics Letters, 2016, 655-656, 86-90.	1.2	8
38	Multicolor multiphoton microscopy based on a nanosecond supercontinuum laser source. Journal of Biophotonics, 2016, 9, 709-714.	1.1	21
39	Hyperspectral coherent Raman imaging – principle, theory, instrumentation, and applications to life sciences. Journal of Raman Spectroscopy, 2016, 47, 116-123.	1.2	32
40	Multimodal Imaging of Living Cells with Multiplex Coherent Anti-stokes Raman Scattering (CARS), Third-order Sum Frequency Generation (TSFG) and Two-photon Excitation Fluorescence (TPEF) Using a Nanosecond White-light Laser Source. Analytical Sciences, 2015, 31, 299-305.	0.8	11
41	Label-Free Spectroscopic Imaging of Rat Eye Tissue Using Multimodal and Multiphoton Microscopy. Nippon Laser Igakkaishi, 2015, 36, 201-209.	0.0	0
42	Raman optical activity spectroscopy by visible-excited coherent anti-Stokes Raman scattering. Optics Letters, 2015, 40, 4170.	1.7	16
43	Intensity enhancement of vibrational sum frequency generation by gap-mode plasmon resonance. Chemical Physics Letters, 2015, 639, 83-87.	1.2	5
44	Multimodal and multiplex spectral imaging of rat cornea <i>ex vivo</i> using a whiteâ€light laser source. Journal of Biophotonics, 2015, 8, 705-713.	1.1	8
45	Surfactant Uptake Dynamics in Mammalian Cells Elucidated with Quantitative Coherent Anti-Stokes Raman Scattering Microspectroscopy. PLoS ONE, 2014, 9, e93401.	1.1	14
46	Linear and nonlinear Raman microspectroscopy: History, instrumentation, and applications. Optical Review, 2014, 21, 752-761.	1.2	13
47	Electronically resonant third-order sum frequency generation spectroscopy using a nanosecond white-light supercontinuum. Optics Express, 2014, 22, 10416.	1.7	8
48	Multimodal nonlinear spectral imaging of tissue samples with CARS molecular fingerprint. , 2014, , .		0
49	Three-pulse multiplex coherent anti-Stokes/Stokes Raman scattering (CARS/CSRS) microspectroscopy using a white-light laser source. Chemical Physics, 2013, 419, 156-162.	0.9	11
50	Raman optical activity by coherent anti-Stokes Raman scattering spectral interferometry. Optics Express, 2013, 21, 13515.	1.7	19
51	Label-free tetra-modal molecular imaging of living cells with CARS, SHG, THG and TSFG (coherent) Tj ETQq1 1 C).784314 rg 1.7	gBT /Overlock 62
52	Time-frequency resolved analysis of a nanosecond supercontinuum source dedicated to multiplex CARS application. Optics Express, 2012, 20, 29705.	1.7	8
53	Observation of Raman Optical Activity by Heterodyne-Detected Polarization-Resolved Coherent Anti-Stokes Raman Scattering. Physical Review Letters, 2012, 109, 083901.	2.9	43
54	Protein Secondary Structure Imaging with Ultrabroadband Multiplex Coherent Anti-Stokes Raman Scattering (CARS) Microspectroscopy. Journal of Physical Chemistry B, 2012, 116, 1452-1457.	1.2	21

#	Article	IF	CITATIONS
55	Active involvement of micro-lipid droplets and lipid-droplet-associated proteins in hormone-stimulated lipolysis in adipocytes. Journal of Cell Science, 2012, 125, 6127-6136.	1.2	60
56	Quantitative coherent anti-Stokes Raman scattering microspectroscopy using a nanosecond supercontinuum light source. Optical Fiber Technology, 2012, 18, 388-393.	1.4	3
57	Quantitative Coherent Anti-Stokes Raman Scattering (CARS) Microscopy. Journal of Physical Chemistry B, 2011, 115, 7713-7725.	1.2	120
58	Living Cell Imaging using a White-light Laser Source. Hyomen Kagaku, 2011, 32, 792-796.	0.0	0
59	Molecular Spectroscopic Imaging Using a White-Light Laser Source. Bulletin of the Chemical Society of Japan, 2010, 83, 735-743.	2.0	6
60	Quantitative CARS Molecular Fingerprinting of Single Living Cells with the Use of the Maximum Entropy Method. Angewandte Chemie - International Edition, 2010, 49, 6773-6777.	7.2	97
61	CARS Microspectroscopic Study of Human Hair Using a Nanosecond White Light Laser Source. , 2010, , .		0
62	CARS Molecular Fingerprinting Using a White-Light Laser Source. , 2010, , .		0
63	Quantitative CARS Spectral Imaging of a Single Living Cell in the Fingerprint Region. , 2010, , .		0
64	Coherent Raman Spectroscopic Imaging Using A Nanosecond White-light Laser Source. The Review of Laser Engineering, 2009, 37, 739-745.	0.0	0
65	Molecular vibrational imaging of a human cell by multiplex coherent anti‣tokes Raman scattering microspectroscopy using a supercontinuum light source. Journal of Raman Spectroscopy, 2008, 39, 1649-1652.	1.2	24
66	Ultrabroadband multiplex CARS microspectroscopy and imaging using a subnanosecond supercontinuum light source in the deep near infrared. Optics Letters, 2008, 33, 923.	1.7	74
67	Intensity enhancement and selective detection of proximate solvent molecules by molecular near-field effect in resonance hyper-Raman scattering. Journal of Chemical Physics, 2008, 129, 024505.	1.2	9
68	Coherent Raman Imaging of Human Living Cells Using a Supercontinuum Light Source. Japanese Journal of Applied Physics, 2007, 46, 6875-6877.	0.8	9
69	S0516 Molecular vibrational imaging of a living cell by nonlinear Raman spectroscopy(Vibrational) Tj ETQq1 1 0.	784314 rg	BT (Overlock
70	Ultrabroadband (>2000 cm^â^'1) multiplex coherent anti-Stokes Raman scattering spectroscopy using a subnanosecond supercontinuum light source. Optics Letters, 2007, 32, 3050.	1.7	34
71	Linear and non-linear Raman microspectroscopy and imaging of single living cells: Visualization of life and death at the cellular level. Handai Nanophotonics, 2007, , 43-56.	0.0	0
72	Supercontinuum Dynamically Visualizes a Dividing Single Cell. Analytical Chemistry, 2007, 79, 8967-8973.	3.2	51

#	Article	IF	CITATIONS
73	Coherent Raman Spectroscopy Using a Supercontinuum Light Source. Molecular Science, 2007, 1, A0005.	0.2	1
74	In-vivo multi-nonlinear optical imaging of a living cell using a single femtosecond Ti:Sapphire oscillator. Springer Series in Chemical Physics, 2007, , 822-824.	0.2	0
75	Three-Dimensional Vibrational Imaging of a Microcrystalline J-Aggregate Using Supercontinuum-Based Ultra-Broadband Multiplex Coherent Anti-Stokes Raman Scattering Microscopy. Journal of Physical Chemistry B, 2006, 110, 3120-3126.	1.2	11
76	Hyper-Raman microspectroscopy: a new approach to completing vibrational spectral and imaging information under a microscope. Optics Letters, 2006, 31, 320.	1.7	31
77	In-vivo multi-nonlinear optical imaging of a living cell using a supercontinuum light source generated from a photonic crystal fiber. Optics Express, 2006, 14, 2798.	1.7	83
78	<title>Coherent anti-Stokes Raman scattering microscopy using a supercontinuum generated from a photonic crystal fiber</title> . , 2006, , .		0
79	Vibrational Imaging of a Single Pollen Grain by Ultrabroadband Multiplex Coherent Anti-Stokes Raman Scattering Microspectroscopy. Chemistry Letters, 2006, 35, 1124-1125.	0.7	29
80	Vibrational imaging of a J-aggregate microcrystal using ultrabroadband multiplex coherent anti-Stokes Raman scattering microspectroscopy. Vibrational Spectroscopy, 2006, 42, 135-139.	1.2	4
81	Dispersion-compensated supercontinuum generation for ultrabroadband multiplex coherent anti-Stokes Raman scattering spectroscopy. Journal of Raman Spectroscopy, 2006, 37, 411-415.	1.2	68
82	Molecular near-field effect and intensity enhancement of solvent modes in resonance hyper-Raman scattering. Journal of Raman Spectroscopy, 2006, 37, 469-471.	1.2	20
83	In-vivo multi-nonlinear optical imaging of a living cell using a single femtosecond Ti:Sapphire oscillator. , 2006, , .		0
84	Molecular Bioimaging by Coherent Raman Scattering Using a Photonic Crystal Fiber. Seibutsu Butsuri, 2006, 46, 349-352.	0.0	1
85	Two-dimensional femtosecond coherent anti-Stokes Raman scattering spectroscopy using a chirped supercontinuum generated from a photonic crystal fiber. Springer Series in Chemical Physics, 2005, , 560-562.	0.2	0
86	Vibrationally resonant imaging of a single living cell by supercontinuum-based multiplex coherent anti-Stokes Raman scattering microspectroscopy. Optics Express, 2005, 13, 1322.	1.7	148
87	Ultrabroadband (>2500cmâ^1) multiplex coherent anti-Stokes Raman scattering microspectroscopy using a supercontinuum generated from a photonic crystal fiber. Applied Physics Letters, 2005, 86, 121113.	1.5	142
88	Cascading third-order Raman process and local structure formation in binary liquid mixtures of benzene and n-hexane. Journal of Chemical Physics, 2005, 122, 064504.	1.2	5
89	Femtosecond coherent anti-Stokes Raman scattering spectroscopy using supercontinuum generated from a photonic crystal fiber. Applied Physics Letters, 2004, 85, 4298.	1.5	85
90	Characterization of a supercontinuum generated from a photonic crystal fiber and its application to coherent Raman spectroscopy. Optics Letters, 2003, 28, 2360.	1.7	82

#	Article	IF	CITATIONS
91	Cascading third-order Raman process studied by six-wave mixing broadband multiplex coherent anti-Stokes Raman scattering spectroscopy. Journal of Chemical Physics, 2003, 118, 4556-4562.	1.2	8
92	Real-Time Spectroscopy of the Excited-State Excitons in Porphyrin J-Aggregates. Bulletin of the Chemical Society of Japan, 2002, 75, 1071-1074.	2.0	14
93	Observation of Herzbergâ^'Teller-type Wave Packet Motion in Porphyrin J-Aggregates Studied by Sub-5-fs Spectroscopy. Journal of Physical Chemistry A, 2002, 106, 3445-3453.	1.1	98
94	Time-resolved fluorescence and absorption spectroscopies of porphyrin J-aggregates. Journal of Chemical Physics, 2002, 116, 184.	1.2	133
95	Real-time spectroscopy of Frenkel exciton system. Journal of Luminescence, 2002, 100, 269-282.	1.5	9
96	Dynamic Intensity Borrowing in Porphyrin J-Aggregates Revealed by Sub-5-fs Spectroscopy. Journal of Physical Chemistry B, 2001, 105, 413-419.	1.2	78
97	Periodic structures in difference phase and transmission spectra studied by a femtosecond Sagnac interferometer. Optics Communications, 2001, 188, 1-9.	1.0	3
98	FIRST OBSERVATION OF DYNAMIC INTENSITY BORROWING INDUCED BY COHERENT MOLECULAR VIBRATIONS IN J-AGGREGATES REVEALED BY SUB-5-FS SPECTROSCOPY. International Journal of Modern Physics B, 2001, 15, 3817-3820.	1.0	6
99	Dynamic intensity borrowing in porphyrin Jaggregates revealed by sub-5-fs spectroscopy. Springer Series in Chemical Physics, 2001, , 604-606.	0.2	0
100	FIRST OBSERVATION OF DYNAMIC INTENSITY BORROWING INDUCED BY COHERENT MOLECULAR VIBRATIONS IN J -AGGREGATES REVEALED BY SUB-5-FS SPECTROSCOPY. , 2001, , .		0
101	Simultaneous measurement of real and imaginary parts of nonlinear susceptibility for the verification of the Kramers–Kronig relations in femtosecond spectroscopy. Optics Communications, 2000, 178, 133-139.	1.0	19
102	Timeâ€Resolved Fluorescence Spectroscopy of Porphyrin Jâ€Aggregates Using Optical Kerr Gate Methods. Journal of the Chinese Chemical Society, 2000, 47, 859-861.	0.8	9
103	DYNAMICAL INTENSITY BORROWING IN PORPHYRIN J-AGGREGATES REVEALED BY SUB-5-FS SPECTROSCOPY. , 2000, , .		0
104	Labelâ€free detection of polysulfides and glycogen of Cyanidium caldarium using ultraâ€multiplex coherent antiâ€Stokes Raman scattering microspectroscopy. Journal of Raman Spectroscopy, 0, , .	1.2	7