
MarÃ-a Roca

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8943841/publications.pdf

Version: 2024-02-01

ΜΑΡÃΑ ΡΟCΑ

#	Article	IF	CITATIONS
1	Multiomics Approach To Decipher the Origin of Chlorophyll Content in Virgin Olive Oil. Journal of Agricultural and Food Chemistry, 2022, 70, 3807-3817.	2.4	2
2	Influence of food composition on chlorophyll bioaccessibility. Food Chemistry, 2022, 386, 132805.	4.2	11
3	<i>In Vitro</i> Bioaccessibility Protocol for Chlorophylls. Journal of Agricultural and Food Chemistry, 2021, 69, 8777-8786.	2.4	8
4	Metabolomics of Chlorophylls and Carotenoids: Analytical Methods and Metabolome-Based Studies. Antioxidants, 2021, 10, 1622.	2.2	9
5	Accomplished High-Resolution Metabolomic and Molecular Studies Identify New Carotenoid Biosynthetic Reactions in Cyanobacteria. Journal of Agricultural and Food Chemistry, 2020, 68, 6212-6220.	2.4	7
6	Carotenoids and Chlorophylls as Antioxidants. Antioxidants, 2020, 9, 505.	2.2	205
7	Profile of Chlorophyll Catabolites in Senescent Leaves of <i>Epipremnun aureum</i> Includes a Catabolite Esterified with Hydroxytyrosol 1- <i>O</i> -Glucoside. Journal of Natural Products, 2020, 83, 873-880.	1.5	8
8	Development of an accurate and direct method for the green food colorants detection. Food Research International, 2020, 136, 109484.	2.9	10
9	HPLC-hrTOF-MS study of copper chlorophylls: Composition of food colorants and biochemistry after ingestion. Food Chemistry, 2020, 321, 126721.	4.2	8
10	Acquisition of Mass Spectrometry Data of Carotenoids: A Focus on Big Data Management. Methods in Molecular Biology, 2020, 2083, 135-144.	0.4	2
11	Analytical Protocols in Chlorophyll Analysis. , 2020, , 127-149.		0
12	Cooking effects on bioaccessibility of chlorophyll pigments of the main edible seaweeds. Food Chemistry, 2019, 295, 101-109.	4.2	25
13	Catabolism and bioactive properties of chlorophylls. Current Opinion in Food Science, 2019, 26, 94-100.	4.1	93
14	Esterified carotenoids as new food components in cyanobacteria. Food Chemistry, 2019, 287, 295-302.	4.2	21
15	Chlorophyll Oxidative Metabolism During the Phototrophic and Heterotrophic Growth of Scenedesmus obliquus. Antioxidants, 2019, 8, 600.	2.2	32
16	Green Natural Colorants. Molecules, 2019, 24, 154.	1.7	92
17	In vitro bioavailability of chlorophyll pigments from edible seaweeds. Journal of Functional Foods, 2018, 41, 25-33.	1.6	40
18	Mass spectrometry: the indispensable tool for plant metabolomics of colourless chlorophyll catabolites. Phytochemistry Reviews, 2018, 17, 453-468.	3.1	12

MarÃa Roca

#	Article	IF	CITATIONS
19	Recent Developments in the Analysis of Carotenoids by Mass Spectrometry. , 2018, , .		3
20	Bioaccessibility of Marine Carotenoids. Marine Drugs, 2018, 16, 397.	2.2	52
21	Editorial: Mass Spectrometry of Chlorophyll Derivatives. Current Organic Chemistry, 2018, 22, 835-835.	0.9	0
22	Mass Spectrometry of Non-allomerized Chlorophylls a and b Derivatives from Plants. Current Organic Chemistry, 2018, 22, 842-876.	0.9	14
23	Firstâ€Pass Metabolism of Chlorophylls in Mice. Molecular Nutrition and Food Research, 2018, 62, e1800562.	1.5	18
24	Effects of Virgin Olive Oils Differing in Their Bioactive Compound Contents on Metabolic Syndrome and Endothelial Functional Risk Biomarkers in Healthy Adults: A Randomized Double-Blind Controlled Trial. Nutrients, 2018, 10, 626.	1.7	39
25	Cooking effects on chlorophyll profile of the main edible seaweeds. Food Chemistry, 2018, 266, 368-374.	4.2	28
26	In vitro digestion of chlorophyll pigments from edible seaweeds. Journal of Functional Foods, 2018, 40, 400-407.	1.6	32
27	Chemistry in the Bioactivity of Chlorophylls: An Overview. Current Medicinal Chemistry, 2018, 24, 4515-4536.	1.2	41
28	Comprehensive chlorophyll composition in the main edible seaweeds. Food Chemistry, 2017, 228, 625-633.	4.2	57
29	Phyllobilins. Studies in Natural Products Chemistry, 2017, , 159-191.	0.8	9
30	Non-fluorescent and yellow chlorophyll catabolites in Japanese plum fruits (Prunus salicina, Lindl.). Food Research International, 2017, 100, 332-338.	2.9	15
31	Chlorophyll catabolism in olive fruits (var. Arbequina and Hojiblanca) during maturation. Food Chemistry, 2016, 212, 604-611.	4.2	27
32	Chlorophylls. , 2016, , 125-158.		24
33	Systematic HPLC/ESI-High Resolution-qTOF-MS Methodology for Metabolomic Studies in Nonfluorescent Chlorophyll Catabolites Pathway. Journal of Analytical Methods in Chemistry, 2015, 2015, 1-10.	0.7	23
34	Development of an accurate and high-throughput methodology for structural comprehension of chlorophylls derivatives. (I) Phytylated derivatives. Journal of Chromatography A, 2015, 1406, 99-108.	1.8	43
35	Development of an accurate and high-throughput methodology for structural comprehension of chlorophylls derivatives. (II) Dephytylated derivatives. Journal of Chromatography A, 2015, 1412, 90-99.	1.8	48
36	A new probe for tracking the presence of E141i food colorant. Food Control, 2015, 51, 240-243.	2.8	15

MarÃa Roca

#	Article	IF	CITATIONS
37	Carotenoid composition in oils obtained from palm fruits from the Brazilian Amazon. Grasas Y Aceites, 2015, 66, e086.	0.3	20
38	Thylakoid peroxidase activity responsible for oxidized chlorophyll accumulation during ripening of olive fruits (Olea europaea L.). Food Research International, 2014, 65, 247-254.	2.9	6
39	Non-fluorescent chlorophyll catabolites in quince fruits. Food Research International, 2014, 65, 255-262.	2.9	31
40	Nonfluorescent Chlorophyll Catabolites in Loquat Fruits (<i>Eriobotrya japonica</i> Lindl.). Journal of Agricultural and Food Chemistry, 2014, 62, 10576-10584.	2.4	26
41	Characterisation of chlorophyll oxidation mediated by peroxidative activity in olives (Olea europaea) Tj ETQq1 1	0.784314 4.2	rg&T /Overlo
42	Chromatographic Methodologies: Compounds for Olive Oil Color Issues. , 2013, , 219-259.		7
43	Mathematical Model To Predict the Formation of Pyropheophytin <i>a</i> in Virgin Olive Oil during Storage. Journal of Agricultural and Food Chemistry, 2012, 60, 7040-7049.	2.4	26
44	Detection of the color adulteration of green table olives with copper chlorophyllin complexes (E-141ii colorant). LWT - Food Science and Technology, 2012, 46, 311-318.	2.5	28
45	In vitro digestive stability and uptake by Caco-2 human intestinal cells of nonfluorescent chlorophyll catabolites. Food Chemistry, 2012, 130, 134-138.	4.2	11
46	Pigment Metabolism of â€~Sikitita' Olive (Olea europaea L.): A New Cultivar Obtained by Cross-Breeding. Journal of Agricultural and Food Chemistry, 2011, 59, 2049-2055.	2.4	10
47	Formation of oxidised chlorophyll catabolites in olives. Journal of Food Composition and Analysis, 2011, 24, 851-857.	1.9	18
48	DPPH-scavenging capacity of chloroplastic pigments and phenolic compounds of olive fruits (cv.) Tj ETQq0 0 0 r	gBT /Overl 1.9	ock_10 Tf 50
49	Control of Olive Oil Adulteration with Copperâ^'Chlorophyll Derivatives. Journal of Agricultural and Food Chemistry, 2010, 58, 51-56.	2.4	44
50	Pigment Profile in Non-Spanish Olive Varieties (Olea europaea L. Var. Coratina, Frantoio, and) Tj ETQq0 0 0 rgBT	/Overlock 2.4	10 Tf 50 222
51	Nondestructive analysis of senescence in mesophyll cells by spectral resolution of protein synthesisâ€dependent pigment metabolism. New Phytologist, 2008, 179, 663-674.	3.5	42
52	An Evaluation of the Basis and Consequences of a Stay-Green Mutation in the <i>navel negra</i> Citrus Mutant Using Transcriptomic and Proteomic Profiling and Metabolite Analysis Â. Plant Physiology, 2008, 147, 1300-1315.	2.3	71
53	Varietal differences in catabolic intermediates of chlorophylls in Olea europaea (L.) fruit cvs. Arbequina and Blanqueta. Postharvest Biology and Technology, 2007, 44, 150-156.	2.9	28
54	Chlorophyll Catabolism Pathway in Fruits ofCapsicum annuum(L.):Â Stay-Green versus Red Fruits. Journal of Agricultural and Food Chemistry, 2006, 54, 4035-4040.	2.4	36

MarÃa Roca

#	Article	IF	CITATIONS
55	Stay-Green Phenotype Slows the Carotenogenic Process inCapsicumannuum(L.) Fruits. Journal of Agricultural and Food Chemistry, 2006, 54, 8782-8787.	2.4	23
56	Effect of storage on the original pigment profile of spanish virgin olive oil. JAOCS, Journal of the American Oil Chemists' Society, 2005, 82, 33.	0.8	43
57	Analysis of the chlorophyll catabolism pathway in leaves of an introgression senescence mutant of Lolium temulentum. Phytochemistry, 2004, 65, 1231-1238.	1.4	66
58	Chlorophyll and carotenoid degradation mediated by thylakoid-associated peroxidative activity in olives (Olea europaea) cv. Hojiblanca. Journal of Plant Physiology, 2004, 161, 499-507.	1.6	32
59	Pigment parameters determining spanish virgin olive oil authenticity: Stability during storage. JAOCS, Journal of the American Oil Chemists' Society, 2003, 80, 1237-1240.	0.8	30
60	Involvement of chlorophyllase in chlorophyll metabolism in olive varieties with high and low chlorophyll content. Physiologia Plantarum, 2003, 117, 459-466.	2.6	40
61	Carotenoid levels during the period of growth and ripening in fruits of different olive varieties (Hojiblanca, Picual and Arbequina). Journal of Plant Physiology, 2003, 160, 451-459.	1.6	20
62	Chlorophyll breakdown: Pheophorbide a oxygenase is a Rieske-type iron-sulfur protein, encoded by the accelerated cell death 1 gene. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 15259-15264.	3.3	399
63	Pectinesterase and polygalacturonase in changes of pectic matter in olives (cv. Hojiblanca) intended for milling. JAOCS, Journal of the American Oil Chemists' Society, 2002, 79, 93.	0.8	20
64	Distribution of chlorophylls and carotenoids in ripening olives and between oil and alperujo when processed using a two-phase extraction system. JAOCS, Journal of the American Oil Chemists' Society, 2002, 79, 105-109.	0.8	21
65	Unusual Carotenogenesis in Fruits with Pronounced Anthocyanic Ripening (Olea) Tj ETQq1 1 0.784314 rgBT /Ov	erlock 10 T 2.4	Tf 50 342 Td
66	Changes in Chloroplast Pigments of Olive Varieties during Fruit Ripening. Journal of Agricultural and Food Chemistry, 2001, 49, 832-839.	2.4	54
67	Change in the natural ratio between chlorophylls and carotenoids in olive fruit during processing for virgin olive oil. JAOCS, Journal of the American Oil Chemists' Society, 2001, 78, 133-138.	0.8	62
68	Use of chlorophyll and carotenoid pigment composition to determine authenticity of virgin olive oil. JAOCS, Journal of the American Oil Chemists' Society, 2000, 77, 853-858.	0.8	79
69	Chlorophyll and Carotenoid Patterns in Olive Fruits,Olea europaeaCv. Arbequina. Journal of Agricultural and Food Chemistry, 1999, 47, 2207-2212.	2.4	51
70	Influence of Processing on Virgin Olive Oil Quality. , 0, , 751-770.		1
71	Chlorophylls and Carotenoids in Food Products from Olive Tree. , 0, , .		13