Chris J Mcneil

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8943589/publications.pdf

Version: 2024-02-01

331670 330143 1,470 50 21 37 h-index citations g-index papers 50 50 50 1296 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Testing the excitability of human motoneurons. Frontiers in Human Neuroscience, 2013, 7, 152.	2.0	163
2	The response to paired motor cortical stimuli is abolished at a spinal level during human muscle fatigue. Journal of Physiology, 2009, 587, 5601-5612.	2.9	112
3	Behaviour of the motoneurone pool in a fatiguing submaximal contraction. Journal of Physiology, 2011, 589, 3533-3544.	2.9	110
4	Peripheral impairments cause a progressive age-related loss of strength and velocity-dependent power in the dorsiflexors. Journal of Applied Physiology, 2007, 102, 1962-1968.	2.5	97
5	Fatigability Is Increased With Age During Velocity-Dependent Contractions of the Dorsiflexors. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2007, 62, 624-629.	3.6	82
6	Fatigueâ€related group III/IV muscle afferent feedback facilitates intracortical inhibition during locomotor exercise. Journal of Physiology, 2018, 596, 4789-4801.	2.9	64
7	Differential changes in muscle oxygenation between voluntary and stimulated isometric fatigue of human dorsiflexors. Journal of Applied Physiology, 2006, 100, 890-895.	2.5	54
8	Motoneuron responsiveness to corticospinal tract stimulation during the silent period induced by transcranial magnetic stimulation. Experimental Brain Research, 2016, 234, 3457-3463.	1.5	54
9	Fatigue-related firing of distal muscle nociceptors reduces voluntary activation of proximal muscles of the same limb. Journal of Applied Physiology, 2014, 116, 385-394.	2.5	52
10	Short-interval cortical inhibition and intracortical facilitation during submaximal voluntary contractions changes with fatigue. Experimental Brain Research, 2016, 234, 2541-2551.	1.5	52
11	The reduction in human motoneurone responsiveness during muscle fatigue is not prevented by increased muscle spindle discharge. Journal of Physiology, 2011, 589, 3731-3738.	2.9	50
12	Blood flow and muscle oxygenation during low, moderate, and maximal sustained isometric contractions. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 309, R475-R481.	1.8	50
13	Firing of antagonist smallâ€diameter muscle afferents reduces voluntary activation and torque of elbow flexors. Journal of Physiology, 2013, 591, 3591-3604.	2.9	49
14	Long-interval intracortical inhibition in a human hand muscle. Experimental Brain Research, 2011, 209, 287-297.	1.5	47
15	Effects of fatigue on corticospinal excitability of the human knee extensors. Experimental Physiology, 2016, 101, 1552-1564.	2.0	43
16	Effects of aging and sex on voluntary activation and peak relaxation rate of human elbow flexors studied with motor cortical stimulation. Age, 2013, 35, 1327-1337.	3.0	38
17	Geometry of a Weight-Bearing and Non-Weight-Bearing Bone in the Legs of Young, Old, and Very Old Men. Calcified Tissue International, 2009, 85, 22-30.	3.1	34
18	The effect of contraction intensity on motor unit number estimates of the tibialis anterior. Clinical Neurophysiology, 2005, 116, 1342-1347.	1.5	33

#	Article	IF	Citations
19	Effect of experimental muscle pain on maximal voluntary activation of human biceps brachii muscle. Journal of Applied Physiology, 2011, 111, 743-750.	2.5	33
20	Neuromuscular adaptations to healthy aging. Applied Physiology, Nutrition and Metabolism, 2018, 43, 1158-1165.	1.9	26
21	UBCâ€Nepal expedition: acclimatization to highâ€altitude increases spinal motoneurone excitability during fatigue in humans. Journal of Physiology, 2018, 596, 3327-3339.	2.9	22
22	Development and recovery time of mental fatigue and its impact on motor function. Biological Psychology, 2021, 161, 108076.	2.2	14
23	The influence of residual force enhancement on spinal and supraspinal excitability. Peerl, 2018, 6, e5421.	2.0	14
24	Prolonged low-frequency force depression is underestimated when assessed with doublets compared with tetani in the dorsiflexors. Journal of Applied Physiology, 2019, 126, 1352-1359.	2.5	12
25	Torque loss induced by repetitive maximal eccentric contractions is marginally influenced by work-to-rest ratio. European Journal of Applied Physiology, 2004, 91, 579-585.	2.5	11
26	The Effects of Sex and Motoneuron Pool on Central Fatigue. Medicine and Science in Sports and Exercise, 2018, 50, 1061-1069.	0.4	11
27	Neuromuscular fatigability at high altitude: Lowlanders with acute and chronic exposure, and native highlanders. Acta Physiologica, 2022, 234, e13788.	3.8	11
28	Torque depression following active shortening is associated with a modulation of cortical and spinal excitation: a history-dependent study. Physiological Reports, 2017, 5, e13367.	1.7	10
29	Spinal excitability is increased in the torque-depressed isometric steady state following active muscle shortening. Royal Society Open Science, 2017, 4, 171101.	2.4	10
30	Sustained Maximal Voluntary Contractions Elicit Different Neurophysiological Responses in Upperand Lower-Limb Muscles in Men. Neuroscience, 2019, 422, 88-98.	2.3	10
31	High-Altitude Acclimatization Improves Recovery from Muscle Fatigue. Medicine and Science in Sports and Exercise, 2020, 52, 161-169.	0.4	10
32	Motor unit contributions to activation reduction and torque steadiness following active lengthening: a study of residual torque enhancement. Journal of Neurophysiology, 2020, 123, 2209-2216.	1.8	10
33	UBCâ€Nepal expedition: peripheral fatigue recovers faster in Sherpa than lowlanders at high altitude. Journal of Physiology, 2018, 596, 5365-5377.	2.9	9
34	The influence of motor cortical stimulus intensity on the relaxation rate of human lower limb muscles. Experimental Brain Research, 2013, 228, 235-242.	1.5	8
35	Corticospinal excitability is enhanced while preparing for complex movements. Experimental Brain Research, 2019, 237, 829-837.	1.5	8
36	Neural effects of sleep deprivation on inhibitory control and emotion processing. Behavioural Brain Research, 2022, 426, 113845.	2.2	7

#	Article	IF	CITATIONS
37	Supraspinal Fatigue and Neural-evoked Responses in Lowlanders and Sherpa at 5050 m. Medicine and Science in Sports and Exercise, 2019, 51, 183-192.	0.4	6
38	The effect of muscle length on transcranial magnetic stimulation-induced relaxation rate in the plantar flexors. Physiological Reports, 2017, 5, e13442.	1.7	5
39	Time course of neuromuscular responses to acute hypoxia during voluntary contractions. Experimental Physiology, 2020, 105, 1855-1868.	2.0	5
40	Electrically evoked force loss of the knee extensors is equivalent for young and old females and males. Applied Physiology, Nutrition and Metabolism, 2020, 45, 1270-1276.	1.9	5
41	A novel way to test human motoneurone behaviour during muscle fatigue. , 2011, , 29-31.		5
42	Severe acute hypoxia impairs recovery of voluntary muscle activation after sustained submaximal elbow flexion. Journal of Physiology, 2021, 599, 5379-5395.	2.9	5
43	Central contributions to torque depression: an antagonist perspective. Experimental Brain Research, 2019, 237, 443-452.	1.5	4
44	Maximal results with minimal stimuli: the fewest high-frequency pulses needed to measure or model prolonged low-frequency force depression in the dorsiflexors. Journal of Applied Physiology, 2021, 131, 716-728.	2.5	4
45	Modulation of vestibular-evoked responses prior to simple and complex arm movements. Experimental Brain Research, 2020, 238, 869-881.	1.5	3
46	Intrinsic Neuromuscular Fatigability in Humans: The Critical Role of Stimulus Frequency. Exercise and Sport Sciences Reviews, 2022, 50, 97-103.	3.0	3
47	The Time Course of Motoneuronal Excitability during the Preparation of Complex Movements. Journal of Cognitive Neuroscience, 2019, 31, 781-790.	2.3	2
48	Postâ€fatigue ability to activate muscle is compromised across a wide range of torques during acute hypoxic exposure. European Journal of Neuroscience, 2022, 56, 4653-4668.	2.6	2
49	The inclusion of interstimulus interval variability does not mitigate electrically-evoked fatigue of the knee extensors. European Journal of Applied Physiology, 2020, 120, 2649-2656.	2.5	1
50	Reply from Luca Ruggiero, Alexandra F. Yacyshyn, Jane Nettleton and Chris J. McNeil. Journal of Physiology, 2018, 596, 3427-3427.	2.9	0