
Jesús Zurdo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/89433/publications.pdf Version: 2024-02-01

Ιεςúς Ζυροο

#	Article	IF	CITATIONS
1	Developability Assessment Workflows to De-Risk Biopharmaceutical Development. , 2015, , 221-290.		1
2	Early Implementation of QbD in Biopharmaceutical Development: A Practical Example. BioMed Research International, 2015, 2015, 1-19.	0.9	47
3	Aggregation risk prediction for antibodies and its application to biotherapeutic development. MAbs, 2015, 7, 352-363.	2.6	87
4	Structure of the Yeast Ribosomal Stalk. , 2014, , 115-125.		10
5	Aggregation of Therapeutic Antibodies: A Multiscale Molecular Dynamics Approach. Biophysical Journal, 2014, 106, 58a-59a.	0.2	Ο
6	Developability assessment as an early de-risking tool for biopharmaceutical development. Pharmaceutical Bioprocessing, 2013, 1, 29-50.	0.8	51
7	Amyloidogenicity and Aggregate Cytotoxicity of Human Glucagon-Like Peptide-1 (hGLP-1). Protein and Peptide Letters, 2009, 16, 1548-1556.	0.4	17
8	Probing the Mechanism of Amyloidogenesis through a Tandem Repeat of the PI3-SH3 Domain Suggests a Generic Model for Protein Aggregation and Fibril Formation. Journal of Molecular Biology, 2006, 356, 189-208.	2.0	92
9	Molecular recycling within amyloid fibrils. Nature, 2005, 436, 554-558.	13.7	342
10	Rational design of aggregation-resistant bioactive peptides: Reengineering human calcitonin. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 10105-10110.	3.3	104
11	Prediction of "Aggregation-prone―and "Aggregation-susceptible―Regions in Proteins Associated with Neurodegenerative Diseases. Journal of Molecular Biology, 2005, 350, 379-392.	2.0	557
12	Polypeptide Models to Understand Misfolding and Amyloidogenesis and Their Relevance in Protein Design and Therapeutics. Protein and Peptide Letters, 2005, 12, 171-187.	0.4	18
13	Short amino acid stretches can mediate amyloid formation in globular proteins: The Src homology 3 (SH3) case. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 7258-7263.	3.3	241
14	Exploring amyloid formation by a de novo design. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 4435-4440.	3.3	166
15	A Highly Amyloidogenic Region of Hen Lysozyme. Journal of Molecular Biology, 2004, 340, 1153-1165.	2.0	248
16	Prediction of the Absolute Aggregation Rates of Amyloidogenic Polypeptide Chains. Journal of Molecular Biology, 2004, 341, 1317-1326.	2.0	307
17	Competing intrachain interactions regulate the formation of beta-sheet fibrils in bovine PrP peptides. Protein Science, 2003, 12, 600-608.	3.1	13
18	Protein Aggregation and Amyloid Fibril Formation by an SH3 Domain Probed by Limited Proteolysis. Journal of Molecular Biology, 2003, 334, 129-141.	2.0	102

Jesús Zurdo

#	Article	IF	CITATIONS
19	Protein folding and misfolding: a paradigm of self–assembly and regulation in complex biological systems. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2003, 361, 1205-1222.	1.6	111
20	Transition from Natively Unfolded to Folded State Induced by Desiccation in an Anhydrobiotic Nematode Protein. Journal of Biological Chemistry, 2003, 278, 12977-12984.	1.6	185
21	De novo designed peptide-based amyloid fibrils. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 16052-16057.	3.3	381
22	Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature, 2002, 416, 507-511.	13.7	2,322
23	Preparation and Characterization of Purified Amyloid Fibrils. Journal of the American Chemical Society, 2001, 123, 8141-8142.	6.6	128
24	Identification of a novel human islet amyloid polypeptide β-sheet domain and factors influencing fibrillogenesis. Journal of Molecular Biology, 2001, 308, 515-525.	2.0	226
25	Dependence on solution conditions of aggregation and amyloid formation by an SH3 domain. Journal of Molecular Biology, 2001, 311, 325-340.	2.0	208
26	Formation of insulin amyloid fibrils followed by FTIR simultaneously with CD and electron microscopy. Protein Science, 2000, 9, 1960-1967.	3.1	453
27	Protein engineering as a strategy to avoid formation of amyloid fibrils. Protein Science, 2000, 9, 1700-1708.	3.1	109
28	Formation and seeding of amyloid fibrils from wild-type hen lysozyme and a peptide fragment from the β-domain. Journal of Molecular Biology, 2000, 300, 541-549.	2.0	395
29	Amyloid Fibril Formation and Seeding by Wild-Type Human Lysozyme and Its Disease-Related Mutational Variants. Journal of Structural Biology, 2000, 130, 339-351.	1.3	299
30	Ultrastructural Organization of Amyloid Fibrils byAtomic Force Microscopy. Biophysical Journal, 2000, 79, 3282-3293.	0.2	185
31	Structural Differences betweenSaccharomyces cerevisiaeRibosomal Stalk Proteins P1 and P2 Support Their Functional Diversityâ€. Biochemistry, 2000, 39, 8935-8943.	1.2	22
32	Assembly ofSaccharomyces cerevisiaeRibosomal Stalk:Â Binding of P1 Proteins Is Required for the Interaction of P2 Proteinsâ€. Biochemistry, 2000, 39, 8929-8934.	1.2	48
33	Cryo-electron microscopy structure of an SH3 amyloid fibril and model of the molecular packing. EMBO Journal, 1999, 18, 815-821.	3.5	487
34	The Exchangeable Yeast Ribosomal Acidic Protein YP2β Shows Characteristics of a Partly Folded State under Physiological Conditions. Biochemistry, 1997, 36, 9625-9635.	1.2	46
35	The structural role of the carotenoid in the bacterial light-harvesting protein 2 (LH2) of Rhodonbacter capsulatus. A Fourier transform Raman spectroscopy and circular dichroism study. Photosynthesis Research, 1995, 46, 363-369.	1.6	12