Thomas Björk Eriksson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8943139/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Insights Gained From a Re-analysis of Five Improvement Cases in Healthcare Integrating System Dynamics Into Action Research. International Journal of Health Policy and Management, 2022, , .	0.9	3
2	Neuropsychological functioning in childhood cancer survivors following cranial radiotherapy – results from a long-term follow-up clinic. Neurocase, 2022, 28, 163-172.	0.6	2
3	Insights gained from a systematic reanalysis of a successful modelâ€facilitated change process in health care. Systems Research and Behavioral Science, 2021, 38, 204-214.	1.6	3
4	Health-related quality of life in patients with primary brain tumors during and three months after treatment with proton beam therapy. Technical Innovations and Patient Support in Radiation Oncology, 2021, 17, 5-17.	1.9	4
5	Long-Term Aspects of Quality of Life in Head and Neck Cancer Patients Treated With Intensity Modulated Radiation Therapy: A 5-Year Longitudinal Follow-up and Comparison with a Normal Population Cohort. Advances in Radiation Oncology, 2020, 5, 101-110.	1.2	18
6	Compression Treatment of Breast Edema: A Randomized Controlled Pilot Study. Lymphatic Research and Biology, 2020, 18, 129-135.	1.1	18
7	Residual positioning errors and uncertainties for pediatric craniospinal irradiation and the impact of image guidance. Radiation Oncology, 2020, 15, 149.	2.7	2
8	Radiation Therapy in Sweden: Past, Present, and Future Perspectives. International Journal of Radiation Oncology Biology Physics, 2020, 107, 6-11.	0.8	2
9	Chronic disturbance in the thalamus following cranial irradiation to the developing mouse brain. Scientific Reports, 2019, 9, 9588.	3.3	2
10	Evaluating the implementation and use of the regional cancer plan in Western Sweden through concept mapping. International Journal for Quality in Health Care, 2019, 31, 44-52.	1.8	2
11	Structure delineation in the presence of metal – A comparative phantom study using single and dual-energy computed tomography with and without metal artefact reduction. Physics and Imaging in Radiation Oncology, 2019, 9, 43-49.	2.9	12
12	Evaluation of quality of care in relation to health-related quality of life of patients diagnosed with brain tumor: a novel clinic for proton beam therapy. Supportive Care in Cancer, 2019, 27, 2679-2691.	2.2	14
13	A role for endothelial cells in radiation-induced inflammation. International Journal of Radiation Biology, 2018, 94, 259-271.	1.8	18
14	Retrospective estimation of heart and lung doses in pediatric patients treated with spinal irradiation. Radiotherapy and Oncology, 2018, 128, 209-213.	0.6	3
15	Impact on quality of life of IMRT versus 3-D conformal radiation therapy in head and neck cancer patients: A case control study. Advances in Radiation Oncology, 2017, 2, 346-353.	1.2	27
16	Serum concentrations of the axonal injury marker neurofilament light protein are not influenced by blood-brain barrier permeability. Brain Research, 2017, 1668, 12-19.	2.2	53
17	Hypothermia after cranial irradiation protects neural progenitor cells in the subventricular zone but not in the hippocampus. International Journal of Radiation Biology, 2017, 93, 771-783.	1.8	2
18	Radiation physiology – evidence for a higher biological effect of 24 Gy in four fractions as compared to three. Acta OncolÃ3gica, 2017, 56, 1240-1243.	1.8	5

Thomas BjĶrk Eriksson

#	Article	IF	CITATIONS
19	A novel mouse model of radiation-induced cancer survivorship diseases of the gut. American Journal of Physiology - Renal Physiology, 2017, 313, G456-G466.	3.4	10
20	Results of preoperative chemoradiotherapy for patients with advanced cancer of the nasal cavity and paranasal sinuses. Acta Oto-Laryngologica, 2017, 137, 1292-1300.	0.9	16
21	Exercise in Adulthood after Irradiation of the Juvenile Brain Ameliorates Long-Term Depletion of Oligodendroglial Cells. Radiation Research, 2017, 188, 443.	1.5	6
22	A national approach for automated collection of standardized and population-based radiation therapy data in Sweden. Radiotherapy and Oncology, 2016, 119, 344-350.	0.6	19
23	Consensus Report From the Stockholm Pediatric Proton Therapy Conference. International Journal of Radiation Oncology Biology Physics, 2016, 96, 387-392.	0.8	46
24	Differences in health related quality of life in the randomised ARTSCAN study; accelerated vs. conventional radiotherapy for head and neck cancer. A five year follow up. Radiotherapy and Oncology, 2016, 118, 335-341.	0.6	15
25	C3 deficiency ameliorates the negative effects of irradiation of the young brain on hippocampal development and learning. Oncotarget, 2016, 7, 19382-19394.	1.8	21
26	Use of PET/CT instead of CT-only when planning for radiation therapy does not notably increase life years lost in children being treated for cancer. Pediatric Radiology, 2015, 45, 570-581.	2.0	4
27	Mature results from a Swedish comparison study of conventional versus accelerated radiotherapy in head and neck squamous cell carcinoma – The ARTSCAN trial. Radiotherapy and Oncology, 2015, 117, 99-105.	0.6	26
28	Different reactions to irradiation in the juvenile and adult hippocampus. International Journal of Radiation Biology, 2014, 90, 807-815.	1.8	40
29	No clinically relevant effect on cognitive outcomes after low-dose radiation to the infant brain: A population-based cohort study in Sweden. Acta Oncológica, 2014, 53, 1143-1150.	1.8	18
30	Optimizing the radiation therapy dose prescription for pediatric medulloblastoma: Minimizing the life years lost attributable to failure to control the disease and late complication risk. Acta OncolA3gica, 2014, 53, 462-470.	1.8	18
31	Neurochemical Evidence of Potential Neurotoxicity After Prophylactic Cranial Irradiation. International Journal of Radiation Oncology Biology Physics, 2014, 89, 607-614.	0.8	16
32	Hippocampal sparing radiotherapy for pediatric medulloblastoma: impact of treatment margins and treatment technique. Neuro-Oncology, 2014, 16, 594-602.	1.2	36
33	Pituitary disease mortality: is it fiction?. Pituitary, 2013, 16, 402-412.	2.9	7
34	Low rate of lymphedema after extended pelvic lymphadenectomy followed by pelvic irradiation of node-positive prostate cancer. Radiation Oncology, 2013, 8, 271.	2.7	16
35	Modeling Freedom From Progression for Standard-Risk Medulloblastoma: A Mathematical Tumor Control Model With Multiple Modes of Failure. International Journal of Radiation Oncology Biology Physics, 2013, 87, 422-429.	0.8	5
36	Hyperfractionated Versus Conventional Radiotherapy Followed by Chemotherapy in Standard-Risk Medulloblastoma: Results From the Randomized Multicenter HIT-SIOP PNET 4 Trial. Journal of Clinical Oncology, 2012, 30, 3187-3193.	1.6	270

#	Article	IF	CITATIONS
37	Estimated clinical benefit of protecting neurogenesis in the developing brain during radiation therapy for pediatric medulloblastoma. Neuro-Oncology, 2012, 14, 882-889.	1.2	69
38	Life years lost—comparing potentially fatal late complications after radiotherapy for pediatric medulloblastoma on a common scale. Cancer, 2012, 118, 5432-5440.	4.1	61
39	Learning and Activity after Irradiation of the Young Mouse Brain Analyzed in Adulthood Using Unbiased Monitoring in a Home Cage Environment. Radiation Research, 2011, 175, 336-346.	1.5	32
40	Radiobiological risk estimates of adverse events and secondary cancer for proton and photon radiation therapy of pediatric medulloblastoma. Acta Oncológica, 2011, 50, 806-816.	1.8	132
41	Two-year results from a Swedish study on conventional versus accelerated radiotherapy in head and neck squamous cell carcinoma – The ARTSCAN study. Radiotherapy and Oncology, 2011, 100, 41-48.	0.6	35
42	Decreased cytogenesis in the granule cell layer of the hippocampus and impaired place learning after irradiation of the young mouse brain evaluated using the IntelliCage platform. Experimental Brain Research, 2010, 201, 781-787.	1.5	42
43	The growth hormone secretagogue hexarelin increases cell proliferation in neurogenic regions of the mouse hippocampus. Growth Hormone and IGF Research, 2010, 20, 49-54.	1.1	10
44	Telemedicine as a tool for sharing competence in paediatric radiotherapy – Implementation and initial experiences from a Swedish project. Acta Oncológica, 2009, 48, 146-152.	1.8	13
45	Irradiation-induced loss of microglia in the young brain. Journal of Neuroimmunology, 2009, 206, 70-75.	2.3	54
46	Expression modes and clinical manifestations of latent membrane protein 1, Kiâ€67, cyclinâ€B1, and epidermal growth factor receptor in nonendemic nasopharyngeal carcinoma. Head and Neck, 2009, 31, 482-492.	2.0	33
47	Irradiation to the immature brain attenuates neurogenesis and exacerbates subsequent hypoxicâ€ischemic brain injury in the adult. Journal of Neurochemistry, 2009, 111, 1447-1456.	3.9	32
48	Differential Recovery of Neural Stem Cells in the Subventricular Zone and Dentate Gyrus After Ionizing Radiation. Stem Cells, 2009, 27, 634-641.	3.2	160
49	Transient Inflammation in Neurogenic Regions after Irradiation of the Developing Brain. Radiation Research, 2009, 171, 66-76.	1.5	77
50	Intensity-modulated radiotherapy of nasopharyngeal carcinoma: a comparative treatment planning study of photons and protons. Radiation Oncology, 2008, 3, 4.	2.7	98
51	Voluntary running rescues adult hippocampal neurogenesis after irradiation of the young mouse brain. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 14632-14637.	7.1	186
52	The quality assurance process for the ARTSCAN head and neck study – A practical interactive approach for QA in 3DCRT and IMRT. Radiotherapy and Oncology, 2008, 87, 290-299.	0.6	21
53	Long-term treatment results for nasopharyngeal carcinoma: The Sahlgrenska University Hospital experience. Acta Oncológica, 2007, 46, 817-827.	1.8	10
54	Accelerated hyperfractionated radiotherapy and concomitant chemotherapy in small cell lung cancer limited-disease. Dose response, feasibility and outcome for patients treated in western Sweden, 1998–2004 Acta OncolÃ3gica, 2007, 46, 969-974.	1.8	7

Thomas BjĶrk Eriksson

#	Article	IF	CITATIONS
55	Human Neuroblasts Migrate to the Olfactory Bulb via a Lateral Ventricular Extension. Science, 2007, 315, 1243-1249.	12.6	804
56	X chromosomeâ€linked inhibitor of apoptosis protein reduces oxidative stress after cerebral irradiation or hypoxiaâ€ischemia through upâ€regulation of mitochondrial antioxidants. European Journal of Neuroscience, 2007, 26, 3402-3410.	2.6	37
57	"Distributed proton radiation therapy―A new concept for advanced competence support. Acta Oncológica, 2006, 45, 1094-1101.	1.8	20
58	Neocortical neurogenesis in humans is restricted to development. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 12564-12568.	7.1	399
59	Ageâ€dependent sensitivity of the developing brain to irradiation is correlated with the number and vulnerability of progenitor cells. Journal of Neurochemistry, 2005, 92, 569-584.	3.9	107
60	Progenitor cell injury after irradiation to the developing brain can be modulated by mild hypothermia or hyperthermia. Journal of Neurochemistry, 2005, 94, 1604-1619.	3.9	25
61	Age-dependent sensitivity of the developing brain to irradiation is correlated with the number and vulnerability of progenitor cells. Journal of Neurochemistry, 2005, 95, 1802-1802.	3.9	0
62	The potential of proton beam radiation therapy in breast cancer. Acta Oncológica, 2005, 44, 884-889.	1.8	17
63	The potential of proton beam radiation for palliation and reirradiation. Acta Oncológica, 2005, 44, 918-920.	1.8	10
64	The potential of proton beam radiation therapy in head and neck cancer. Acta Oncológica, 2005, 44, 876-880.	1.8	20
65	The potential of proton beam therapy in paediatric cancer. Acta Oncológica, 2005, 44, 871-875.	1.8	11
66	The potentials of proton beam radiation therapy in malignant lymphoma, thymoma and sarcoma. Acta Oncológica, 2005, 44, 913-917.	1.8	12
67	Number of patients potentially eligible for proton therapy. Acta OncolÃ ³ gica, 2005, 44, 836-849.	1.8	80
68	Does electron and proton therapy reduce the risk of radiation induced cancer after spinal irradiation for childhood medulloblastoma? A comparative treatment planning study. Acta Oncológica, 2005, 44, 554-562.	1.8	93
69	Accuracy of tele-oncology compared with face-to-face consultation in head and neck cancer case conferences. Journal of Telemedicine and Telecare, 2001, 7, 338-343.	2.7	27
70	Tumor radiosensitivity (SF2) is a prognostic factor for local control in head and neck cancers. International Journal of Radiation Oncology Biology Physics, 2000, 46, 13-19.	0.8	113
71	The immunohistochemical expression of DNA-PKcs and Ku (p70/p80) in head and neck cancers: relationships with radiosensitivity. International Journal of Radiation Oncology Biology Physics, 1999, 45, 1005-1010.	0.8	37
72	Neurogenesis in the adult human hippocampus. Nature Medicine, 1998, 4, 1313-1317.	30.7	5,606