
Stephen J Benkovic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8943056/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Perspective on Enzyme Catalysis. Science, 2003, 301, 1196-1202.	6.0	1,118
2	Construction and evaluation of the kinetic scheme associated with dihydrofolate reductase from Escherichia coli. Biochemistry, 1987, 26, 4085-4092.	1.2	516
3	Reversible Compartmentalization of de Novo Purine Biosynthetic Complexes in Living Cells. Science, 2008, 320, 103-106.	6.0	459
4	A Dynamic Knockout Reveals That Conformational Fluctuations Influence the Chemical Step of Enzyme Catalysis. Science, 2011, 332, 234-238.	6.0	414
5	A New View into the Regulation of Purine Metabolism: The Purinosome. Trends in Biochemical Sciences, 2017, 42, 141-154.	3.7	386
6	Controlling cell–cell interactions using surface acoustic waves. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 43-48.	3.3	330
7	Surface Sites for Engineering Allosteric Control in Proteins. Science, 2008, 322, 438-442.	6.0	310
8	Replisome-Mediated DNA Replication. Annual Review of Biochemistry, 2001, 70, 181-208.	5.0	309
9	Chemical Basis for Enzyme Catalysis. Biochemistry, 2000, 39, 6267-6274.	1.2	292
10	Metallo-β-lactamase: structure and mechanism. Current Opinion in Chemical Biology, 1999, 3, 614-622.	2.8	285
11	Interaction of dihydrofolate reductase with methotrexate: Ensemble and single-molecule kinetics. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 13481-13486.	3.3	254
12	Free-Energy Landscape of Enzyme Catalysis. Biochemistry, 2008, 47, 3317-3321.	1.2	251
13	Kinetic characterization of the polymerase and exonuclease activities of the gene 43 protein of bacteriophage T4. Biochemistry, 1992, 31, 10984-10994.	1.2	242
14	Design and Evolution of New Catalytic Activity with an Existing Protein Scaffold. Science, 2006, 311, 535-538.	6.0	240
15	Flexibility, Diversity, and Cooperativity: Pillars of Enzyme Catalysis. Biochemistry, 2011, 50, 10422-10430.	1.2	235
16	Boron-containing inhibitors of synthetases. Chemical Society Reviews, 2011, 40, 4279.	18.7	224
17	A combinatorial approach to hybrid enzymes independent of DNA homology. Nature Biotechnology, 1999, 17, 1205-1209.	9.4	206
18	On the Mechanism of the Metallo-β-lactamase fromBacteroides fragilisâ€. Biochemistry, 1999, 38, 10013-10023.	1.2	192

#	Article	IF	CITATIONS
19	Evidence for a Functional Role of the Dynamics of Glycine-121 ofEscherichia coliDihydrofolate Reductase Obtained from Kinetic Analysis of a Site-Directed Mutantâ€. Biochemistry, 1997, 36, 15792-15800.	1.2	190
20	Tunneling and Coupled Motion in the Escherichia coli Dihydrofolate Reductase Catalysis. Journal of the American Chemical Society, 2004, 126, 4778-4779.	6.6	189
21	Metabolomics and mass spectrometry imaging reveal channeled de novo purine synthesis in cells. Science, 2020, 368, 283-290.	6.0	185
22	Spatial colocalization and functional link of purinosomes with mitochondria. Science, 2016, 351, 733-737.	6.0	174
23	Coordinated effects of distal mutations on environmentally coupled tunneling in dihydrofolate reductase. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 15753-15758.	3.3	171
24	Coupling Interactions of Distal Residues Enhance Dihydrofolate Reductase Catalysis:Â Mutational Effects on Hydride Transfer Ratesâ€. Biochemistry, 2002, 41, 12618-12628.	1.2	167
25	Coupled motions in enzyme catalysis. Current Opinion in Chemical Biology, 2010, 14, 644-651.	2.8	165
26	Dynamics of the Dihydrofolate Reductase-Folate Complex: Catalytic Sites and Regions Known To Undergo Conformational Change Exhibit Diverse Dynamical Features. Biochemistry, 1995, 34, 11037-11048.	1.2	162
27	Solvation, Reorganization Energy, and Biological Catalysis. Journal of Biological Chemistry, 1998, 273, 26257-26260.	1.6	152
28	Dynamics of a flexible loop in dihydrofolate reductase from Escherichia coli and its implication for catalysis. Biochemistry, 1994, 33, 439-442.	1.2	150
29	A perspective on biological catalysis. Nature Structural and Molecular Biology, 1996, 3, 821-833.	3.6	148
30	Split-intein mediated circular ligation used in the synthesis of cyclic peptide libraries in E. coli. Nature Protocols, 2007, 2, 1126-1133.	5.5	148
31	Impact of distal mutations on the network of coupled motions correlated to hydride transfer in dihydrofolate reductase. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 6807-6812.	3.3	140
32	Real-time observation of bacteriophage T4 gp41 helicase reveals an unwinding mechanism. Proceedings of the United States of America, 2007, 104, 19790-19795.	3.3	139
33	Inhibition of HIV Budding by a Genetically Selected Cyclic Peptide Targeting the Gagâ^'TSG101 Interaction. ACS Chemical Biology, 2008, 3, 757-764.	1.6	136
34	Perspectives on Electrostatics and Conformational Motions in Enzyme Catalysis. Accounts of Chemical Research, 2015, 48, 482-489.	7.6	136
35	From The Cover: The dynamic processivity of the T4 DNA polymerase during replication. Proceedings of the United States of America, 2004, 101, 8289-8294.	3.3	125
36	Transition-state stabilization as a measure of the efficiency of antibody catalysis. Nature, 1995, 375, 388-391.	13.7	124

#	Article	IF	CITATIONS
37	Substrate-driven chemotactic assembly in an enzyme cascade. Nature Chemistry, 2018, 10, 311-317.	6.6	121
38	Evolution of cyclic peptide protease inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11052-11056.	3.3	118
39	Finding Cinderella's slipper—proteins that fit. Nature Biotechnology, 1999, 17, 639-640.	9.4	117
40	Regulation of polymerase exchange between Poll· and Polĺ by monoubiquitination of PCNA and the movement of DNA polymerase holoenzyme. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 5361-5366.	3.3	117
41	Mechanism of oxygen activation by pteridine-dependent monooxygenases. Accounts of Chemical Research, 1988, 21, 101-107.	7.6	116
42	Electron spin-echo studies of the copper binding site in phenylalanine hydroxylase from Chromobacterium violaceum. Journal of the American Chemical Society, 1988, 110, 1069-1074.	6.6	116
43	[13] Purification and characterization of human immunodeficiency virus type 1 reverse transcriptase. Methods in Enzymology, 1995, 262, 130-144.	0.4	116
44	Catalytic Antibodies. Annual Review of Biochemistry, 1992, 61, 29-54.	5.0	114
45	A systematic method for identifying small-molecule modulators of protein-protein interactions. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 15591-15596.	3.3	110
46	Reaction mechanisms displayed by catalytic antibodies. Accounts of Chemical Research, 1993, 26, 396-404.	7.6	109
47	Ring Structure and Aromatic Substituent Effects on the p <i>K</i> _a of the Benzoxaborole Pharmacophore. ACS Medicinal Chemistry Letters, 2012, 3, 48-52.	1.3	109
48	Multisubstrate adduct inhibitors of glycinamide ribonucleotide transformylase: Synthetic and enzyme-assembled Tetrahedron, 1991, 47, 2351-2364.	1.0	106
49	NMR Characterization of the Metallo-β-lactamase from Bacteroides fragilis and Its Interaction with a Tight-Binding Inhibitor:  Role of an Active-Site Loop. Biochemistry, 1999, 38, 14507-14514.	1.2	104
50	Bait and switch strategy for obtaining catalytic antibodies with acyl-transfer capabilities. Journal of the American Chemical Society, 1990, 112, 1274-1275.	6.6	103
51	The Compensation in ΔH[UNK] and ΔS[UNK] Accompanying the Conversion of Lower Order Nucleophilic Displacement Reactions to Higher Order Catalytic Processes. The Temperature Dependence of the Hydrazinolysis and Imidazole-Catalyzed Hydrolysis of Substituted Phenyl Acetates. Journal of the American Chemical Society. 1964. 86. 418-426.	6.6	102
52	Direct Observation of an Enzyme-Bound Intermediate in the Catalytic Cycle of the Metallo-β-Lactamase from Bacteroides fragilis. Journal of the American Chemical Society, 1998, 120, 10788-10789.	6.6	102
53	Effects of the Donor–Acceptor Distance and Dynamics on Hydride Tunneling in the Dihydrofolate Reductase Catalyzed Reaction. Journal of the American Chemical Society, 2012, 134, 1738-1745.	6.6	102
54	Replication Clamps and Clamp Loaders. Cold Spring Harbor Perspectives in Biology, 2013, 5, a010165-a010165.	2.3	102

#	Article	IF	CITATIONS
55	Quantitative Analysis of Purine Nucleotides Indicates That Purinosomes Increase de Novo Purine Biosynthesis. Journal of Biological Chemistry, 2015, 290, 6705-6713.	1.6	101
56	Functional role of a mobile loop of Escherichia coli dihydrofolate reductase in transition-state stabilization. Biochemistry, 1992, 31, 7826-7833.	1.2	100
57	The Control Mechanism for Lagging Strand Polymerase Recycling during Bacteriophage T4 DNA Replication. Molecular Cell, 2006, 21, 153-164.	4.5	100
58	Protein-DNA cross-linking demonstrates stepwise ATP-dependent assembly of T4 DNA polymerase and its accessory proteins on the primer-template. Cell, 1991, 65, 249-258.	13.5	97
59	Identification of Borinic Esters as Inhibitors of Bacterial Cell Growth and Bacterial Methyltransferases, CcrM and MenH. Journal of Medicinal Chemistry, 2005, 48, 7468-7476.	2.9	97
60	The unique chemistry of benzoxaboroles: Current and emerging applications in biotechnology and therapeutic treatments. Bioorganic and Medicinal Chemistry, 2014, 22, 4462-4473.	1.4	97
61	DNA Polymerase as a Molecular Motor and Pump. ACS Nano, 2014, 8, 2410-2418.	7.3	97
62	A Comparison of the Bimolecular and Intramolecular Nucleophilic Catalysis of the Hydrolysis of Substituted Phenyl Acylates by the Dimethylamino Group. Journal of the American Chemical Society, 1963, 85, 1-8.	6.6	91
63	Tunable, pulsatile chemical gradient generation via acoustically driven oscillating bubbles. Lab on A Chip, 2013, 13, 328-331.	3.1	91
64	Genetically Selected Cyclic-Peptide Inhibitors of AICAR Transformylase Homodimerization. Angewandte Chemie - International Edition, 2005, 44, 2760-2763.	7.2	90
65	Regulation of Rad6/Rad18 Activity During DNA Damage Tolerance. Annual Review of Biophysics, 2015, 44, 207-228.	4.5	90
66	Evaluation of the importance of hydrophobic interactions in drug binding to dihydrofolate reductase. Journal of Medicinal Chemistry, 1988, 31, 129-137.	2.9	89
67	Structural requirements for the biosynthesis of backbone cyclic peptide libraries. Chemistry and Biology, 2001, 8, 801-815.	6.2	89
68	Stretching exercises — flexibility in dihydrofolate reductase catalysis. Chemistry and Biology, 1998, 5, R105-R113.	6.2	88
69	GPCRs regulate the assembly of a multienzyme complex for purine biosynthesis. Nature Chemical Biology, 2011, 7, 909-915.	3.9	88
70	Elucidation of the Mechanism of the Reaction between Phenylboronic Acid and a Model Diol, Alizarin Red S. Journal of Organic Chemistry, 2012, 77, 2098-2106.	1.7	88
71	Hybrid enzymes: manipulating enzyme design. Trends in Biotechnology, 1998, 16, 258-264.	4.9	86
72	Coupling DNA unwinding activity with primer synthesis in the bacteriophage T4 primosome. Nature Chemical Biology, 2009, 5, 904-912.	3.9	86

#	Article	IF	CITATIONS
73	Probing the Electrostatics of Active Site Microenvironments along the Catalytic Cycle for <i>Escherichia coli</i> Dihydrofolate Reductase. Journal of the American Chemical Society, 2014, 136, 10349-10360.	6.6	85
74	Purification, Characterization, and Kinetic Studies of a SolubleBacteroides fragilis Metallo-β-lactamase That Provides Multiple Antibiotic Resistance. Journal of Biological Chemistry, 1998, 273, 22402-22408.	1.6	84
75	Functional significance of evolving protein sequence in dihydrofolate reductase from bacteria to humans. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 10159-10164.	3.3	84
76	Purinosome formation as a function of the cell cycle. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1368-1373.	3.3	84
77	BIOCHEMISTRY: Enzyme Motions Inside and Out. Science, 2006, 312, 208-209.	6.0	82
78	Microtubule-assisted mechanism for functional metabolic macromolecular complex formation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 12872-12876.	3.3	82
79	Hsp70/Hsp90 chaperone machinery is involved in the assembly of the purinosome. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 2528-2533.	3.3	81
80	Studies on Sulfate Esters. I. Nucleophilic Reactions of Amines with p-Nitrophenyl Sulfate. Journal of the American Chemical Society, 1966, 88, 5504-5511.	6.6	79
81	Catalytic Antibody Model and Mutagenesis Implicate Arginine in Transition-state Stabilization. Journal of Molecular Biology, 1994, 235, 1098-1116.	2.0	78
82	Towards Structure-based Drug Design: Crystal Structure of a Multisubstrate Adduct Complex of Glycinamide Ribonucleotide Transformylase at 1.96 Ã Resolution. Journal of Molecular Biology, 1995, 249, 153-175.	2.0	77
83	A Distal Mutation Perturbs Dynamic Amino Acid Networks in Dihydrofolate Reductase. Biochemistry, 2013, 52, 4605-4619.	1.2	77
84	Accessory proteins function as matchmakers in the assembly of the T4 DNA polymerase holoenzyme. Current Biology, 1995, 5, 149-157.	1.8	76
85	Direct Observation of Stalled Fork Restart via Fork Regression in the T4 Replication System. Science, 2012, 338, 1217-1220.	6.0	75
86	Peptide bond formation via catalytic antibodies: Synthesis of a novel phosphonate diester hapten. Tetrahedron Letters, 1994, 35, 6853-6856.	0.7	74
87	Mapping Proteinâ^'Protein Interactions in the Bacteriophage T4 DNA Polymerase Holoenzyme Using a Novel Trifunctional Photo-cross-linking and Affinity Reagent. Journal of the American Chemical Society, 2000, 122, 6126-6127.	6.6	73
88	Crystal structure of a bifunctional transformylase and cyclohydrolase enzyme in purine biosynthesis. Nature Structural Biology, 2001, 8, 402-406.	9.7	72
89	Phenylalanine Hydroxylase Stimulator Protein Is a 4α-Carbinolamine Dehydratase. Journal of Biological Chemistry, 1983, 258, 10960-10962.	1.6	72
90	Mechanism of Action of Fructose 1,6-Bisphosphatase. Advances in Enzymology and Related Areas of Molecular Biology, 2006, 53, 45-82.	1.3	71

#	Article	IF	CITATIONS
91	Human de novo purine biosynthesis. Critical Reviews in Biochemistry and Molecular Biology, 2021, 56, 1-16.	2.3	71
92	Structure-reactivity correlation for the hydrolysis of phosphoramidate monoanions. Journal of the American Chemical Society, 1971, 93, 4009-4016.	6.6	70
93	Synthesis and application of derivatizable oligonucleotides. Nucleic Acids Research, 1987, 15, 6455-6467.	6.5	70
94	Subcloning, characterization, and affinity labeling of Escherichia coli glycinamide ribonucleotide transformylase. Biochemistry, 1990, 29, 1436-1443.	1.2	70
95	FamClash: A method for ranking the activity of engineered enzymes. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 4142-4147.	3.3	70
96	Identification of a novel boron-containing antibacterial agent (AN0128) with anti-inflammatory activity, for the potential treatment of cutaneous diseases. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 5963-5967.	1.0	69
97	How a holoenzyme for DNA replication is formed. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 99-104.	3.3	69
98	On the cofactor specificity of glycinamide ribonucleotide and 5-aminoimidazole-4-carboxamide ribonucleotide transformylase from chicken liver. Biochemistry, 1981, 20, 1241-1245.	1.2	68
99	Deletion of a Highly Motional Residue Affects Formation of the Michaelis Complex forEscherichia coliDihydrofolate Reductaseâ€. Biochemistry, 1998, 37, 6327-6335.	1.2	68
100	Incremental truncation as a strategy in the engineering of novel biocatalysts. Bioorganic and Medicinal Chemistry, 1999, 7, 2139-2144.	1.4	68
101	Sliding Clamp of the Bacteriophage T4 Polymerase Has Open and Closed Subunit Interfaces in Solutionâ€. Biochemistry, 1999, 38, 7696-7709.	1.2	68
102	Mechanism of strand displacement synthesis by DNA replicative polymerases. Nucleic Acids Research, 2012, 40, 6174-6186.	6.5	68
103	Single-molecule and transient kinetics investigation of the interaction of dihydrofolate reductase with NADPH and dihydrofolate. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 2764-2769.	3.3	67
104	Structural Basis for Amide Hydrolysis Catalyzed by the 43C9 Antibody. Journal of Molecular Biology, 1999, 291, 329-345.	2.0	66
105	Cyanotryptophans as Novel Fluorescent Probes for Studying Protein Conformational Changes and DNA–Protein Interaction. Biochemistry, 2015, 54, 7457-7469.	1.2	66
106	Crystal structure of glycinamide ribonucleotide transformylase from Escherichia coli at 3·0 Ã resolution. Journal of Molecular Biology, 1992, 227, 283-292.	2.0	65
107	The structure of a ring-opened proliferating cell nuclear antigen-replication factor C complex revealed by fluorescence energy transfer. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 2546-2551.	3.3	65
108	Probing cell–cell communication with microfluidic devices. Lab on A Chip, 2013, 13, 3152.	3.1	65

#	Article	IF	CITATIONS
109	A multifunctional protein possessing glycinamide ribonucleotide synthetase, glycinamide ribonucleotide transformylase, and aminoimidazolecarboxamide ribonucleotide synthetase activities in de novo purine biosynthesis. Biochemistry, 1985, 24, 7059-7062.	1.2	64
110	Preorganization and protein dynamics in enzyme catalysis. Chemical Record, 2002, 2, 24-36.	2.9	64
111	A clamp-like biohybrid catalyst for DNA oxidation. Nature Chemistry, 2013, 5, 945-951.	6.6	64
112	Substituent effects of an antibody-catalyzed hydrolysis of phenyl esters: further evidence for an acyl-antibody intermediate. Journal of the American Chemical Society, 1992, 114, 3528-3534.	6.6	62
113	Strength of an Interloop Hydrogen Bond Determines the Kinetic Pathway in Catalysis byEscherichia coliDihydrofolate Reductaseâ€. Biochemistry, 1998, 37, 6336-6342.	1.2	62
114	Collaborative coupling between polymerase and helicase for leading-strand synthesis. Nucleic Acids Research, 2012, 40, 6187-6198.	6.5	62
115	Targeting Tumour Proliferation with a Smallâ€Molecule Inhibitor of AICAR Transformylase Homodimerization. ChemBioChem, 2012, 13, 1628-1634.	1.3	62
116	Role of Adenosine 5â€~-Triphosphate Hydrolysis in the Assembly of the Bacteriophage T4 DNA Replication Holoenzyme Complex. Biochemistry, 1996, 35, 9253-9265.	1.2	61
117	Dynamic Regulation of a Metabolic Multi-enzyme Complex by Protein Kinase CK2. Journal of Biological Chemistry, 2010, 285, 11093-11099.	1.6	61
118	The interconversion of the 5,6,7,8-tetrahydro-, 6,7,8-dihydro-, and radical forms of 6,6,7,7-tetramethyldihydropterin. A model for the biopterin center of aromatic amino acid mixed function oxidases. Journal of the American Chemical Society, 1984, 106, 7916-7924.	6.6	60
119	Cloning and Characterization of a New Purine Biosynthetic Enzyme: A Non-Folate Glycinamide Ribonucleotide Transformylase from E. coli. Biochemistry, 1994, 33, 2531-2537.	1.2	60
120	Using an AraC-based three-hybrid system to detect biocatalysts in vivo. Nature Biotechnology, 2000, 18, 544-547.	9.4	59
121	Bacteriophage T4 Dda Helicase Translocates in a Unidirectional Fashion on Single-stranded DNA. Journal of Biological Chemistry, 1995, 270, 22236-22242.	1.6	58
122	Stoichiometry and DNA Unwinding by the Bacteriophage T4 41:59 Helicase. Journal of Biological Chemistry, 1996, 271, 14074-14081.	1.6	57
123	Enhanced crossover SCRATCHY: construction and high-throughput screening of a combinatorial library containing multiple non-homologous crossovers. Nucleic Acids Research, 2003, 31, 126e-126.	6.5	57
124	Mapping Protein-Protein Proximity in the Purinosome. Journal of Biological Chemistry, 2012, 287, 36201-36207.	1.6	57
125	Detection of Dihydrofolate Reductase Conformational Change by FRET Using Two Fluorescent Amino Acids. Journal of the American Chemical Society, 2013, 135, 12924-12927.	6.6	57
126	Interloop Contacts Modulate Ligand Cycling during Catalysis byEscherichia coliDihydrofolate Reductaseâ€. Biochemistry, 2001, 40, 867-875.	1.2	56

#	Article	IF	CITATIONS
127	Role of a solvent-exposed tryptophan in the recognition and binding of antibiotic substrates for a metallo-β-lactamase. Protein Science, 2003, 12, 1368-1375.	3.1	56
128	Discovery of antibacterial cyclic peptides that inhibit the ClpXP protease. Protein Science, 2007, 16, 1535-1542.	3.1	56
129	<i>Escherichia coli</i> dihydrofolate reductase catalyzed proton and hydride transfers: Temporal order and the roles of Asp27 and Tyr100. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 18231-18236.	3.3	56
130	Phenylalanine hydroxylase: structural determination of the tetrahydropterin intermediates by carbon-13 NMR spectroscopy. Journal of the American Chemical Society, 1982, 104, 6869-6871.	6.6	55
131	Principles of antibody catalysis. BioEssays, 1988, 9, 107-112.	1.2	55
132	Tracking Sliding Clamp Opening and Closing during Bacteriophage T4 DNA Polymerase Holoenzyme Assemblyâ€. Biochemistry, 2000, 39, 3076-3090.	1.2	54
133	Evolution of highly active enzymes by homology-independent recombination. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 10082-10087.	3.3	54
134	IPRO: An Iterative Computational Protein Library Redesign and Optimization Procedure. Biophysical Journal, 2006, 90, 4167-4180.	0.2	54
135	A multisubstrate adduct inhibitor of a purine biosynthetic enzyme with a picomolar dissociation constant. Journal of Medicinal Chemistry, 1989, 32, 937-940.	2.9	53
136	Dual Role of the 44/62 Protein as a Matchmaker Protein and DNA Polymerase Chaperone during Assembly of the Bacteriophage T4 Holoenzyme Complexâ€. Biochemistry, 1996, 35, 1084-1092.	1.2	53
137	Mechanistic aspects of DNA polymerases: Escherichia coli DNA polymerase I (Klenow fragment) as a paradigm. Chemical Reviews, 1990, 90, 1291-1307.	23.0	52
138	Truncating α-Helix E′ of p66 Human Immunodeficiency Virus Reverse Transcriptase Modulates RNase H Function and Impairs DNA Strand Transfer. Journal of Biological Chemistry, 1995, 270, 7068-7076.	1.6	52
139	Evolution of protein function by Domain swapping. Advances in Protein Chemistry, 2001, 55, 29-77.	4.4	51
140	Intricacies in ATP-Dependent Clamp Loading. Structure, 2001, 9, 999-1004.	1.6	51
141	Single-molecule mechanical identification and sequencing. Nature Methods, 2012, 9, 367-372.	9.0	51
142	Nonadditivity of mutational effects at the folate binding site of Escherichia coli dihydrofolate reductase. Biochemistry, 1994, 33, 11576-11585.	1.2	49
143	Dissecting the Order of Bacteriophage T4 DNA Polymerase Holoenzyme Assemblyâ€. Biochemistry, 1998, 37, 7749-7756.	1.2	49
144	A Zinc Ribbon Protein in DNA Replication:  Primer Synthesis and Macromolecular Interactions by the Bacteriophage T4 Primase. Biochemistry, 2001, 40, 15074-15085.	1.2	49

#	Article	IF	CITATIONS
145	Identification and Mapping of Protein-Protein Interactions between gp32 and gp59 by Cross-linking. Journal of Biological Chemistry, 2001, 276, 25236-25242.	1.6	49
146	Biochemical Characterization of Bacteriophage T4 Mre11-Rad50 Complex. Journal of Biological Chemistry, 2011, 286, 2382-2392.	1.6	48
147	Acoustofluidic Chemical Waveform Generator and Switch. Analytical Chemistry, 2014, 86, 11803-11810.	3.2	48
148	Microtubule-directed transport of purine metabolons drives their cytosolic transit to mitochondria. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 13009-13014.	3.3	48
149	[20] Kinetic analysis of nucleotide incorporation and misincorporation by klenow fragment of Escherichia coli DNA polymerase I. Methods in Enzymology, 1995, 262, 257-269.	0.4	47
150	Studies on 6-methyl-5-deazatetrahydropterin and its 4a adducts. Journal of the American Chemical Society, 1979, 101, 6068-6076.	6.6	46
151	Electrostatic Characterization of Enzyme Complexes:  Evaluation of the Mechanism of Catalysis of Dihydrofolate Reductase. Journal of the American Chemical Society, 1997, 119, 2386-2395.	6.6	46
152	Unexpected Formation of an Epoxide-Derived Multisubstrate Adduct Inhibitor on the Active Site of GAR Transformylaseâ€,‡. Biochemistry, 2001, 40, 13538-13547.	1.2	46
153	Examination of the Role of the Clamp-loader and ATP Hydrolysis in the Formation of the Bacteriophage T4 Polymerase Holoenzyme. Journal of Molecular Biology, 2003, 326, 435-451.	2.0	46
154	Cyclic Peptides, A Chemical Genetics Tool for Biologists. Cell Cycle, 2005, 4, 552-555.	1.3	46
155	Magnetic resonance studies of the anomeric distribution and manganese binding properties of fructose phosphates. Biochemical and Biophysical Research Communications, 1972, 47, 852-858.	1.0	45
156	Molecular Basis for Nonadditive Mutational Effects in Escherichia coli Dihydrofolate Reductase. Biochemistry, 1995, 34, 15671-15680.	1.2	45
157	Stability of the human polymerase δholoenzyme and its implications in lagging strand DNA synthesis. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1777-86.	3.3	45
158	Protein-Protein Interactions in the Bacteriophage T4 Replisome. Journal of Biological Chemistry, 2003, 278, 3145-3152.	1.6	44
159	[60] Fructose-1,6-diphosphatase from rabbit liver. Methods in Enzymology, 1975, 42, 369-374.	0.4	43
160	Metabolic channeling: predictions, deductions, and evidence. Molecular Cell, 2021, 81, 3775-3785.	4.5	43
161	Molecular Structure ofEscherichia coliPurT-Encoded Glycinamide Ribonucleotide Transformylaseâ€,‡. Biochemistry, 2000, 39, 8791-8802.	1.2	42
162	Multimeric Structure of the Secreted Meprin A Metalloproteinase and Characterization of the Functional Protomer. Journal of Biological Chemistry, 2001, 276, 23207-23211.	1.6	42

#	Article	IF	CITATIONS
163	On the Solution Structure of the T4 Sliding Clamp (gp45). Biochemistry, 2004, 43, 12723-12727.	1.2	42
164	Assembly of the bacteriophage T4 primosome: Single-molecule and ensemble studies. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 3254-3259.	3.3	42
165	Lab-on-a-chip technologies for single-molecule studies. Lab on A Chip, 2013, 13, 2183.	3.1	42
166	Effect of accessory proteins on T4 DNA polymerase replication fidelity. Journal of Molecular Biology, 1998, 278, 135-146.	2.0	41
167	Synthesis of (6R,11S)- and (6R,11R)-5,10-methylene[11-1H,2H]tetrahydrofolate. Stereochemical paths of serine hydroxymethyltransferase, 5,10-methylenetetrahydrofolate dehydrogenase, and thymidylate synthetase catalysis. Journal of the American Chemical Society, 1984, 106, 1833-1838.	6.6	40
168	Stereoselective synthesis and biological activity of .beta and .alphaD-arabinose 1,5-diphosphate: analogs of a potent metabolic regulator. Journal of the American Chemical Society, 1984, 106, 7851-7853.	6.6	40
169	Investigations of an Antibody Ligase. Journal of the American Chemical Society, 1997, 119, 278-282.	6.6	40
170	Catalytic Mechanism ofEscherichia coliGlycinamide Ribonucleotide Transformylase Probed by Site-Directed Mutagenesis and pH-Dependent Studiesâ€. Biochemistry, 1999, 38, 10024-10031.	1.2	40
171	Genetic Selection of Cyclic Peptide Dam Methyltransferase Inhibitors. ChemBioChem, 2008, 9, 194-197.	1.3	40
172	Eukaryotic Translesion DNA Synthesis on the Leading and Lagging Strands: Unique Detours around the Same Obstacle. Chemical Reviews, 2017, 117, 7857-7877.	23.0	40
173	A new chemical synthesis of 2-amino-(N-d-ribofuranosyl)acetamide 5′-phosphate. Carbohydrate Research, 1977, 56, 75-86.	1.1	39
174	The effect of the 3′,5′ thiophosphoryl linkage on the exonuclease activities of T4 polymerase and the Klenow fragment. Nucleic Acids Research, 1984, 12, 5897-5911.	6.5	39
175	Protein-Protein and Protein-DNA Interactions at the Bacteriophage T4 DNA Replication Fork. Journal of Biological Chemistry, 1996, 271, 28045-28051.	1.6	39
176	Assembly of the Bacteriophage T4 Helicase. Journal of Biological Chemistry, 2002, 277, 20555-20562.	1.6	39
177	Unusual rate enhancement in metal ion catalysis of phosphate transfer. Journal of the American Chemical Society, 1971, 93, 1526-1527.	6.6	38
178	10-formyl-5,8,10-trideazafolic acid (10-formyl-TDAF): A potent inhibitor of glycinamide ribonucleotide transformylase. Bioorganic and Medicinal Chemistry, 1997, 5, 1817-1830.	1.4	38
179	Human AICAR Transformylase:  Role of the 4-Carboxamide of AICAR in Binding and Catalysis. Biochemistry, 2000, 39, 11303-11311.	1.2	38
180	Interaction between the T4 Helicase Loading Protein (gp59) and the DNA Polymerase (gp43):Â Unlocking of the gp59â^'gp43â^'DNA Complex to Initiate Assembly of A Fully Functional Replisomeâ€. Biochemistry, 2005, 44, 7747-7756.	1.2	38

#	Article	IF	CITATIONS
181	A highly efficient chemical synthesis of Rp and Sp adenyl(3′-5′)adenyl-o,o-phosphorothioate. Tetrahedron Letters, 1980, 21, 1121-1124.	0.7	37
182	Catalytic antibodies: mechanistic and practical considerations. Chemical Society Reviews, 1993, 22, 213.	18.7	37
183	Protein Conformational Changes Are Detected and Resolved Site Specifically by Second-Harmonic Generation. Biophysical Journal, 2015, 109, 806-815.	0.2	37
184	Single-Molecule Investigation of the T4 Bacteriophage DNA Polymerase Holoenzyme:Â Multiple Pathways of Holoenzyme Formationâ€. Biochemistry, 2006, 45, 7990-7997.	1.2	36
185	Studies on Sulfate Esters. II. Carboxyl Group Catalysis in the Hydrolysis of Salicyl Sulfate. Journal of the American Chemical Society, 1966, 88, 5511-5515.	6.6	35
186	Tautomeric nature of quinonoid 6,7-dimethyl-7,8-dihydro-6H-pterin in aqueous solution: a nitrogen-15 NMR study. Journal of the American Chemical Society, 1985, 107, 3706-3712.	6.6	35
187	Clamp Subunit Dissociation Dictates Bacteriophage T4 DNA Polymerase Holoenzyme Disassembly. Biochemistry, 1998, 37, 1819-1827.	1.2	35
188	Interaction between the T4 Helicase-Loading Protein (gp59) and the DNA Polymerase (gp43):Â A Locking Mechanism to Delay Replication during Replisome Assemblyâ€. Biochemistry, 2005, 44, 2305-2318.	1.2	35
189	Characterization of human translesion DNA synthesis across a UV-induced DNA lesion. ELife, 2016, 5, .	2.8	35
190	Anomerization rates and enzyme specificity for biologically important sugars and sugar phosphates. Accounts of Chemical Research, 1978, 11, 136-141.	7.6	34
191	Design, synthesis, and biological evaluation of simplified α-Keto heterocycle, trifluoromethyl ketone, and formyl substituted folate analogues as potential inhibitors of GAR transformylase and AICAR transformylase. Bioorganic and Medicinal Chemistry, 2003, 11, 4487-4501.	1.4	34
192	Magnetic Tweezers for the Study of DNA Tracking Motors. Methods in Enzymology, 2010, 475, 297-320.	0.4	34
193	Formyl Phosphate:  A Proposed Intermediate in the Reaction Catalyzed by Escherichia coli PurT GAR Transformylase. Biochemistry, 1997, 36, 6709-6716.	1.2	33
194	Mechanism-Based Inhibition of an Essential Bacterial Adenine DNA Methyltransferase:Â Rationally Designed Antibiotics. Journal of the American Chemical Society, 2001, 123, 976-977.	6.6	33
195	Models for tetrahydrofolic acid. I. Condensation of formaldehyde with tetrahydroquinoxaline analogs. Journal of the American Chemical Society, 1969, 91, 5270-5279.	6.6	32
196	Site-specific mutagenesis of dihydrofolate reductase fromEscherichia coli. Journal of Cellular Biochemistry, 1985, 29, 73-82.	1.2	32
197	Evaluation of the Kinetic Mechanism ofEscherichia coliGlycinamide Ribonucleotide Transformylaseâ€. Biochemistry, 1998, 37, 8776-8782.	1.2	32
198	Architecture of the bacteriophage T4 primosome: Electron microscopy studies of helicase (gp41) and primase (gp61). Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 3623-3626.	3.3	32

#	Article	IF	CITATIONS
199	Capturing a Sulfenic Acid with Arylboronic Acids and Benzoxaborole. Journal of the American Chemical Society, 2013, 135, 14544-14547.	6.6	32
200	Catalytic antibody for imide hydrolysis featuring a bifunctional transition-state mimic. Journal of the American Chemical Society, 1993, 115, 350-351.	6.6	31
201	Spectroscopic Studies on the Designed Metal-Binding Sites of the 43C9 Single Chain Antibody. Journal of the American Chemical Society, 1995, 117, 5627-5634.	6.6	31
202	PurT-encoded Glycinamide Ribonucleotide Transformylase. Journal of Biological Chemistry, 2002, 277, 23898-23908.	1.6	31
203	On the mechanisms of folate cofactors. Accounts of Chemical Research, 1978, 11, 314-320.	7.6	30
204	Complementary perturbation of the kinetic mechanism and catalytic effectiveness of dihydrofolate reductase by side-chain interchange. Biochemistry, 1992, 31, 7834-7840.	1.2	30
205	Development of an Internally Quenched Fluorescent Substrate forEscherichia coliLeader Peptidase. Analytical Biochemistry, 1998, 255, 66-73.	1.1	30
206	Two Pyrenylalanines in Dihydrofolate Reductase Form an Excimer Enabling the Study of Protein Dynamics. Journal of the American Chemical Society, 2012, 134, 18883-18885.	6.6	30
207	Hypoxia drives the assembly of the multienzyme purinosome complex. Journal of Biological Chemistry, 2020, 295, 9551-9566.	1.6	30
208	Studies in sulfate esters. V. Mechanism of hydrolysis of phenyl phosphosulfate, a model system for 3'-phosphoadenosine 5'-phosphosulfate. Journal of the American Chemical Society, 1970, 92, 4971-4977.	6.6	29
209	Binding of hapten to a single-chain catalytic antibody demonstrated by electrospray mass spectrometry. Journal of the American Chemical Society, 1994, 116, 7937-7938.	6.6	29
210	Dynamic protein interactions in the bacteriophage T4 replisome. Trends in Biochemical Sciences, 2001, 26, 566-572.	3.7	29
211	Identification of the Active Oligomeric State of an Essential Adenine DNA Methyltransferase from Caulobacter crescentus. Journal of Biological Chemistry, 2001, 276, 14744-14751.	1.6	29
212	The Oligomeric T4 Primase Is the Functional Form duringReplication. Journal of Biological Chemistry, 2005, 280, 25416-25423.	1.6	29
213	Stepwise assembly of the human replicative polymerase holoenzyme. ELife, 2013, 2, e00278.	2.8	29
214	The transformylase enzymes in de novo purine biosynthesis. Trends in Biochemical Sciences, 1984, 9, 320-322.	3.7	28
215	1H, 15N and 13C resonance assignments, secondary structure, and the conformation of substrate in the binary folate complex of Escherichia coli dihydrofolate reductase. Journal of Biomolecular NMR, 1994, 4, 349-366.	1.6	28
216	Assembly and disassembly of DNA polymerase holoenzyme. Current Opinion in Chemical Biology, 1997, 1, 316-322.	2.8	28

#	ARTICLE	IF	CITATIONS
217	The T4 Phage UvsW Protein Contains Both DNA Unwinding and Strand Annealing Activities. Journal of Biological Chemistry, 2007, 282, 407-416.	1.6	28
218	RNA Primer Handoff in Bacteriophage T4 DNA Replication. Journal of Biological Chemistry, 2008, 283, 22838-22846.	1.6	28
219	Response of the Bacteriophage T4 Replisome to Noncoding Lesions and Regression of a Stalled Replication Fork. Journal of Molecular Biology, 2010, 401, 743-756.	2.0	28
220	Dark-Field Illumination on Zero-Mode Waveguide/Microfluidic Hybrid Chip Reveals T4 Replisomal Protein Interactions. Nano Letters, 2014, 14, 1952-1960.	4.5	28
221	Structural determination of quinonoid dihydropterins. Journal of the American Chemical Society, 1982, 104, 6871-6872.	6.6	27
222	On the mechanism of action of phenylalanine hydroxylase. Biochemical Society Transactions, 1985, 13, 436-438.	1.6	27
223	Building a Replisome Solution Structure by Elucidation of Protein-Protein Interactions in the Bacteriophage T4 DNA Polymerase Holoenzyme. Journal of Biological Chemistry, 2001, 276, 39340-39349.	1.6	27
224	The Application of a Minicircle Substrate in the Study of the Coordinated T4 DNA Replication. Journal of Biological Chemistry, 2003, 278, 49828-49838.	1.6	27
225	Substrate attenuation: An approach to improve antibody catalysis. Tetrahedron, 1991, 47, 2503-2506.	1.0	26
226	Recent Developments in Catalytic Antibodies. International Reviews of Immunology, 1993, 10, 229-240.	1.5	26
227	Mechanism of Bacteriophage T4 DNA Holoenzyme Assembly:  The 44/62 Protein Acts as a Molecular Motor. Biochemistry, 1997, 36, 2733-2743.	1.2	26
228	Isothermal DNA amplification using the T4 replisome: circular nicking endonuclease-dependent amplification and primase-based whole-genome amplification. Nucleic Acids Research, 2010, 38, e201-e201.	6.5	26
229	Synthesis and separation of diastereomers of deoxynucleoside 5'– 0(l–thio)triptaosphates. Nucleic Acids Research, 1983, 11, 3737-3751.	6.5	25
230	Computational studies on pterins and speculations on the mechanism of action of dihydrofolate reductase. Biochemical and Biophysical Research Communications, 1989, 161, 64-68.	1.0	25
231	Catalytic antibodies: Perusing combinatorial libraries. Trends in Biochemical Sciences, 1994, 19, 145-150.	3.7	25
232	The state of antibody catalysis. Current Opinion in Biotechnology, 1997, 8, 459-466.	3.3	25
233	Use of Inteins for the In Vivo Production of Stable Cyclic Peptide Libraries in E. coli. , 2003, 205, 281-294.		25
234	An Alternative Clamp Loading Pathway via the T4 Clamp Loader gp44/62â^'DNA Complexâ€. Biochemistry, 2006, 45, 7976-7989.	1.2	25

#	Article	IF	CITATIONS
235	Investigation of Stoichiometry of T4 Bacteriophage Helicase Loader Protein (gp59). Journal of Biological Chemistry, 2009, 284, 29283-29289.	1.6	25
236	Replication Protein A Prohibits Diffusion of the PCNA Sliding Clamp along Single-Stranded DNA. Biochemistry, 2017, 56, 1824-1835.	1.2	25
237	Dissociation of Bacteriophage T4 DNA Polymerase and Its Processivity Clamp after Completion of Okazaki Fragment Synthesisâ€. Biochemistry, 1997, 36, 14409-14417.	1.2	24
238	Functionalized analogues of 5,8,10-trideazafolate as potential inhibitors of GAR Tfase or AICAR Tfase. Bioorganic and Medicinal Chemistry, 1997, 5, 1831-1838.	1.4	24
239	The Carboxyl Terminus of the Bacteriophage T4 DNA Polymerase Contacts Its Sliding Clamp at the Subunit Interface. Journal of Biological Chemistry, 1999, 274, 24485-24489.	1.6	24
240	Homology-independent protein engineering. Current Opinion in Biotechnology, 2000, 11, 319-324.	3.3	24
241	Examination of the Reactivity of Benzoxaboroles and Related Compounds with a <i>cis</i> -Diol. Journal of Organic Chemistry, 2012, 77, 11200-11209.	1.7	24
242	Tryptophan-based fluorophores for studying protein conformational changes. Bioorganic and Medicinal Chemistry, 2014, 22, 5924-5934.	1.4	24
243	Kinetic detection of the imminium cation in formaldehyde-amine condensations in neutral aqueous solution. Journal of the American Chemical Society, 1969, 91, 1860-1861.	6.6	23
244	Dissociative Properties of the Proteins within the Bacteriophage T4 Replisome. Journal of Biological Chemistry, 2003, 278, 49839-49849.	1.6	23
245	Stepwise loading of yeast clamp revealed by ensemble and single-molecule studies. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19736-19741.	3.3	23
246	Understanding DNA replication by the bacteriophage T4 replisome. Journal of Biological Chemistry, 2017, 292, 18434-18442.	1.6	23
247	Effect of divalent metal ions on the intramolecular nucleophilic catalysis of phosphate diester hydrolysis. Journal of the American Chemical Society, 1973, 95, 936-938.	6.6	22
248	Consideration of the pH-dependent inhibition of dihydrofolate reductase by methotrexate 1 1Edited by B. Honig. Journal of Molecular Biology, 1997, 271, 656-668.	2.0	22
249	Replication protein A dynamically regulates monoubiquitination of proliferating cell nuclear antigen. Journal of Biological Chemistry, 2019, 294, 5157-5168.	1.6	22
250	Preparation of 2-amino-4(3H)-oxopyrimido[5,4-b][1,4]thiazines (5-thiapterins) and their evaluation as cofactors for phenylalanine hydroxylase. Journal of Medicinal Chemistry, 1983, 26, 559-563.	2.9	21
251	On interpreting the inhibition of and catalysis by dihydrofolate reductase. Trends in Biochemical Sciences, 1987, 12, 275-278.	3.7	21
252	The Human Lagging Strand DNA Polymerase l´ Holoenzyme Is Distributive*. Journal of Biological Chemistry, 2012, 287, 38442-38448.	1.6	21

#	Article	IF	CITATIONS
253	Hydrolytic mechanisms of phosphoramidates of aromatic amino acids. Journal of the American Chemical Society, 1967, 89, 4714-4722.	6.6	20
254	Analysis of the Stoichiometry of the T4 Gene 45 Protein by Ion Spray Mass Spectrometry. Journal of the American Chemical Society, 1994, 116, 1352-1358.	6.6	20
255	Catalytic Antibodies in Synthesis:Â Design and Synthesis of a Hapten for Application to the Preparation of a Scalemic Pyrrolidine Ring Synthon for Ptilomycalin A. Journal of Organic Chemistry, 1996, 61, 125-132.	1.7	20
256	Functionalized analogues of 5,8,10-trideazafolate: Development of an enzyme-assembled tight binding inhibitor of GAR Tfase and a potential irreversible inhibitor of AICAR Tfase. Bioorganic and Medicinal Chemistry, 1997, 5, 1839-1846.	1.4	20
257	Design, synthesis, and evaluation of potential GAR and AICAR transformylase inhibitors. Bioorganic and Medicinal Chemistry, 1998, 6, 643-659.	1.4	20
258	The Purinosome: A Case Study for a Mammalian Metabolon. Annual Review of Biochemistry, 2022, 91, 89-106.	5.0	20
259	Active site topology of artificial peroxidase-like hemoproteins based on antibodies constructed from a specifically designed ortho-carboxy-substituted tetraarylporphyrin. FEBS Journal, 1998, 257, 121-130.	0.2	19
260	Dependence of mechanism on pH for deuterium-hydrogen exchange in 1-methyltetrazole-5-d. Transition metal ion catalysis of a deprotonation process. Journal of the American Chemical Society, 1972, 94, 5759-5765.	6.6	18
261	Antibody-Catalyzed Rearrangement of a Peptide Bond: Mechanistic and Kinetic Investigations. Journal of the American Chemical Society, 1995, 117, 4729-4741.	6.6	18
262	Expression of an Orotate Decarboxylating Catalytic Antibody Confers 5-Fluoroorotate Sensitivity to a Pyrimidine Auxotrophic Escherichia coli: An Example of Intracellular Prodrug Activation. Journal of the American Chemical Society, 1995, 117, 3877-3878.	6.6	18
263	Structural and functional modularity of proteins in the de novo purine biosynthetic pathway. Protein Science, 2009, 18, 881-892.	3.1	18
264	[6] Chromobacterium violaceum phenylalanine 4-monooxygenase. Methods in Enzymology, 1987, 142, 50-56.	0.4	17
265	Multisubstrate analogue based on 5,8,10-trideazafolate. Bioorganic and Medicinal Chemistry, 1997, 5, 1853-1857.	1.4	17
266	Abenzyl 10-formyl-trideazafolic acid (abenzyl 10-formyl-TDAF): An effective inhibitor of glycinamide ribonucleotide transformylase. Bioorganic and Medicinal Chemistry, 1997, 5, 1847-1852.	1.4	16
267	Conformationally restricted analogues designed for selective inhibition of GAR Tfase versus thymidylate synthase or dihydrofolate reductase. Bioorganic and Medicinal Chemistry, 2000, 8, 1075-1086.	1.4	16
268	10-Formyl-5,10-dideaza-acyclic-5,6,7,8-tetrahydrofolic acid (10-Formyl-DDACTHF). Bioorganic and Medicinal Chemistry, 2002, 10, 2739-2749.	1.4	16
269	Design, synthesis and biological evaluation of 10-CF3CO-DDACTHF analogues and derivatives as inhibitors of GAR Tfase and the de novo purine biosynthetic pathway. Bioorganic and Medicinal Chemistry, 2003, 11, 4511-4521.	1.4	16
270	Engineering an affinity tag for genetically encoded cyclic peptides. Biotechnology and Bioengineering, 2005, 92, 820-830.	1.7	16

#	Article	IF	CITATIONS
271	Role of HSP90 in the Regulation of <i>de Novo</i> Purine Biosynthesis. Biochemistry, 2018, 57, 3217-3221.	1.2	16
272	Purine biosynthetic enzymes assemble into liquid-like condensates dependent on the activity of chaperone protein HSP90. Journal of Biological Chemistry, 2022, 298, 101845.	1.6	16
273	Studies on models for tetrahydrofolic acid. II. Additional observations on the mechanism for condensation of formaldehyde with tetrahydroquinoxaline analogs. Journal of the American Chemical Society, 1970, 92, 523-528.	6.6	15
274	Intramolecular and divalent metal ion catalysis. Hydrolytic mechanism of O-phenyl N-(glycyl)phosphoramidate. Journal of Organic Chemistry, 1973, 38, 1301-1306.	1.7	15
275	Protein Engineering of Dihydrofolate Reductase. pH Dependency of Phe-31 Mutants. Bulletin of the Chemical Society of Japan, 1987, 60, 3025-3030.	2.0	15
276	Elucidation of the metal-binding properties of the Klenow fragment of Escherichia coli polymerase I and bacteriophage T4 DNA polymerase by lanthanide(III) luminescence spectroscopy. Chemistry and Biology, 1996, 3, 393-403.	6.2	15
277	Evaluation of the Catalytic Mechanism of AICAR Transformylase by pH-Dependent Kinetics, Mutagenesis, and Quantum Chemical Calculations. Journal of the American Chemical Society, 2001, 123, 4687-4696.	6.6	15
278	C-protein-coupled receptor regulation of <i>de novo</i> purine biosynthesis: a novel druggable mechanism. Biotechnology and Genetic Engineering Reviews, 2013, 29, 31-48.	2.4	15
279	RNA primer–primase complexes serve as the signal for polymerase recycling and Okazaki fragment initiation in T4 phage DNA replication. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5635-5640.	3.3	15
280	Monitoring the Retention of Human Proliferating Cell Nuclear Antigen at Primer/Template Junctions by Proteins That Bind Single-Stranded DNA. Biochemistry, 2017, 56, 3415-3421.	1.2	15
281	Mechanisms of hydrolysis of phosphate ester derivatives of phosphoenolpyruvic acid. Journal of the American Chemical Society, 1971, 93, 2522-2529.	6.6	14
282	Mechanism of hydrolysis of phosphorylethanolamine triesters. Multiple catalytic effects of an intramolecular amino group. Journal of the American Chemical Society, 1979, 101, 4300-4312.	6.6	14
283	Construction of hybrid gene libraries involving the circular permutation of DNA. Biotechnology Letters, 2001, 23, 303-310.	1.1	14
284	Site-directed Mutations of T4 Helicase Loading Protein (gp59) Reveal Multiple Modes of DNA Polymerase Inhibition and the Mechanism of Unlocking by gp41 Helicase. Journal of Biological Chemistry, 2006, 281, 8697-8706.	1.6	14
285	Coordinated DNA Replication by the Bacteriophage T4 Replisome. Viruses, 2015, 7, 3186-3200.	1.5	14
286	Mapping Post-Translational Modifications of de Novo Purine Biosynthetic Enzymes: Implications for Pathway Regulation. Journal of Proteome Research, 2019, 18, 2078-2087.	1.8	14
287	Synthesis of 5,11-methenyltetrahydrohomofolate and its antifolate activity in vitro. Journal of Medicinal Chemistry, 1981, 24, 1086-1088.	2.9	13
288	The effect of arabinose 1,5-bisphosphate on rat hepatic 6-phosphofructo-1-kinase and fructose-1,6-bisphosphatase. Biochemical and Biophysical Research Communications, 1986, 138, 159-166.	1.0	13

#	Article	IF	CITATIONS
289	The key is in the pocket. Nature, 1996, 383, 23-24.	13.7	13
290	Expanding the 43C9 class of catalytic antibodies using a chain-shuffling approach. Bioorganic and Medicinal Chemistry, 1997, 5, 581-590.	1.4	13
291	Design, synthesis, and biological evaluation of fluoronitrophenyl substituted folate analogues as potential inhibitors of GAR transformylase and AICAR transformylase. Bioorganic and Medicinal Chemistry Letters, 2000, 10, 1471-1475.	1.0	13
292	Pentacovalent phosphorus in the hydrolysis of dibenzylphosphoenolpyruvate. Journal of the American Chemical Society, 1969, 91, 5653-5654.	6.6	12
293	The Mechanism of Action of Phenylalanine Hydroxylase. Annals of the New York Academy of Sciences, 1986, 471, 226-232.	1.8	12
294	A Multisubstrate Adduct Inhibitor of AICAR Transformylase. Journal of Medicinal Chemistry, 1999, 42, 3421-3424.	2.9	12
295	Insights into Okazaki Fragment Synthesis by the T4 Replisome. Journal of Biological Chemistry, 2013, 288, 20807-20816.	1.6	12
296	The synthesis and properties in enzymic reactions of substrate analogs containing the methylphosphonyl group. Archives of Biochemistry and Biophysics, 1979, 197, 218-225.	1.4	11
297	Behavior of a cross-linked attachment site: Testing the role of branch migration in site-specific recombination. Journal of Molecular Biology, 1991, 220, 621-629.	2.0	11
298	Improvement in the efficiency of formyl transfer of a GAR transformylase hybrid enzyme. Protein Engineering, Design and Selection, 2000, 13, 323-327.	1.0	11
299	Combinatorial approaches to engineering hybrid enzymes. Perkin Transactions II RSC, 2002, , 1483-1493.	1.1	11
300	Dihydrofolate Reductase Mutant with Exceptional Resistance to Methotrexate but Not to Trimetrexate. Journal of Medicinal Chemistry, 2003, 46, 2816-2818.	2.9	11
301	A nonradioactive DNA methyltransferase assay adaptable to high-throughput screening. Analytical Biochemistry, 2005, 340, 336-340.	1.1	11
302	Repetitive lagging strand DNA synthesis by the bacteriophage T4 replisome. Molecular BioSystems, 2008, 4, 1070.	2.9	11
303	Multienzyme interactions of the de novo purine biosynthetic protein PAICS facilitate purinosome formation and metabolic channeling. Journal of Biological Chemistry, 2022, 298, 101853.	1.6	11
304	Stereoselective chemical reduction of 5,10-methenyltetrahydrofolate. Journal of the American Chemical Society, 1973, 95, 5409-5411.	6.6	10
305	Interaction of T4 UvsW Helicase and Single-Stranded DNA Binding Protein gp32 through Its Carboxy-Terminal Acidic Tail. Journal of Molecular Biology, 2013, 425, 2823-2839.	2.0	10
306	Probing DNA clamps with single-molecule force spectroscopy. Nucleic Acids Research, 2013, 41, 7804-7814.	6.5	10

#	Article	IF	CITATIONS
307	Studies on sulfate esters. III. A comparison of the solvolyses of salicyl sulfate and sulfur trioxide. Journal of the American Chemical Society, 1968, 90, 2646-2650.	6.6	9
308	The mechanism of oxidation of 6-methyl-5-carba-5-deazatetrahydropterin. Evidence for the involvement cf a 4a-adduct in the oxidation of tetrahydropterins Tetrahedron Letters, 1978, 19, 2271-2274.	0.7	9
309	The Dynamics of DNA Polymerase-Catalyzed Reactions. Advances in Enzymology and Related Areas of Molecular Biology, 2006, 61, 437-457.	1.3	9
310	Expression of the purine biosynthetic enzyme phosphoribosyl formylglycinamidine synthase in neurons. Journal of Neurochemistry, 2018, 144, 723-735.	2.1	9
311	PCNA Monoubiquitination Is Regulated by Diffusion of Rad6/Rad18 Complexes along RPA Filaments. Biochemistry, 2020, 59, 4694-4702.	1.2	9
312	Generation and thiol reduction of a "quinonoid" dihydropterin and an oxidized pyrimidine analog. Journal of the American Chemical Society, 1979, 101, 6144-6145.	6.6	8
313	Synthesis of [4a-13C]-6-methyltetrahydropterin. Journal of Labelled Compounds and Radiopharmaceuticals, 1982, 19, 1189-1195.	0.5	8
314	Protein Engineering of Dihydrofolate Reductase. Improved Catalytic Step of Mutant-Enzymes. Bulletin of the Chemical Society of Japan, 1987, 60, 3017-3024.	2.0	8
315	4 Analysis of Protein Function by Mutagenesis. The Enzymes, 1990, 19, 159-211.	0.7	8
316	A two-phagemid system for the creation of non-phage displayed antibody libraries approaching one trillion members. Journal of Immunological Methods, 2000, 237, 175-186.	0.6	8
317	The use of modified and non-natural nucleotides provide unique insights into pro-mutagenic replication catalyzed by polymerase eta. Nucleic Acids Research, 2016, 44, 1022-1035.	6.5	8
318	[14] Anomeric specificity of carbohydrate-utilizing enzymes. Methods in Enzymology, 1979, 63, 370-379.	0.4	7
319	The reaction of nucleophilic species with quinonoid 6,6,7,7-tetramethyldihydropterin. Bioorganic Chemistry, 1986, 14, 17-27.	2.0	7
320	Threading your way to protein function. Chemistry and Biology, 1996, 3, 779-783.	6.2	7
321	Synthesis and biological evaluation of N-{4-[5-(2,4-diamino-6-oxo-1,6-dihydropyrimidin-5-yl)-2-(2,2,2-trifluoroacetyl)pentyl]benzoyl}-l-glutamic acid as a potential inhibitor of GAR Tfase and the de novo purine biosynthetic pathway. Bioorganic and Medicinal Chemistry. 2005. 13. 3593-3599.	1.4	7
322	10-(2-Benzoxazolcarbonyl)-5,10-dideaza-acyclic-5,6,7,8-tetrahydrofolic acid. Bioorganic and Medicinal Chemistry, 2003, 11, 4503-4509.	1.4	6
323	Synthesis and biological evaluation of α- and γ-carboxamide derivatives of 10-CF3CO-DDACTHF. Bioorganic and Medicinal Chemistry, 2005, 13, 3587-3592.	1.4	6
324	On the structural and functional modularity of glycinamide ribonucleotide formyltransferases. Protein Science, 2009, 12, 2206-2214.	3.1	6

#	Article	IF	CITATIONS
325	Detecting Purinosome Metabolon Formation with Fluorescence Microscopy. Methods in Molecular Biology, 2018, 1764, 279-289.	0.4	6
326	Stoppedâ€Flow Apparatus for a Zeiss PMQ II Spectrophotometer. Review of Scientific Instruments, 1965, 36, 860-861.	0.6	5
327	A convenient synthesis of 2S, 3S-[3-2H]-serine and 2S, 3R-[2, 3-2H2]-serine. Journal of Labelled Compounds and Radiopharmaceuticals, 1982, 19, 647-657.	0.5	5
328	Identifying Smallâ€Molecule Modulators of Proteinâ€Protein Interactions. Current Protocols in Protein Science, 2006, 46, Unit 19.15.	2.8	5
329	Recognition of a Key Anchor Residue by a Conserved Hydrophobic Pocket Ensures Subunit Interface Integrity in DNA Clamps. Journal of Molecular Biology, 2019, 431, 2493-2510.	2.0	5
330	S <scp>ection of</scp> C <scp>atalysis</scp> : MODEL REACTIONS FOR CATALYSIS OF PHOSPHATE AND SULFATE TRANSFER*. Transactions of the New York Academy of Sciences, 1970, 32, 330-336.	0.2	4
331	Inhibition of chicken liver 5-aminoimidazole-4-carboxamide ribonucleotide transformylase by 5,8-dideaza analogues of folic acid. Biochemical Pharmacology, 1988, 37, 449-451.	2.0	4
332	A new synthesis of double labeled [7, 9 -13C2] folic acid. Journal of Labelled Compounds and Radiopharmaceuticals, 1994, 34, 67-71.	0.5	4
333	Engineering Protein Evolution. , 0, , 177-213.		4
334	Synthesis and biological evaluation of 9-thia-5,10-dideazafolic acid. Journal of Heterocyclic Chemistry, 2002, 39, 1097-1099.	1.4	4
335	Using Incremental Truncation to Create Libraries of Hybrid Enzymes. Methods in Enzymology, 2004, 388, 50-60.	0.4	4
336	Design, synthesis, and biological evaluation of 10-methanesulfonyl-DDACTHF, 10-methanesulfonyl-5-DACTHF, and 10-methylthio-DDACTHF as potent inhibitors of GAR Tfase and the de novo purine biosynthetic pathway. Bioorganic and Medicinal Chemistry, 2005, 13, 3577-3585.	1.4	4
337	[34] Photochemical cross-linking of DNA replication proteins at primer terminus. Methods in Enzymology, 1995, 262, 449-456.	0.4	3
338	A perspective on biological catalysis. Journal of Physical Organic Chemistry, 1998, 11, 508-511.	0.9	3
339	'Screw-cap' clamp loader proteins that thread. Nature Structural and Molecular Biology, 2004, 11, 580-581.	3.6	3
340	Insights into Enzymic Catalysis from Studies on Dihydrofolate Reductases. Pteridines, 1989, 1, 37-43.	0.5	3
341	Additions and Corrections - Stereoselective Chemical Reduction of 5,10-Methenyltetrahydrofolate. Journal of the American Chemical Society, 1975, 97, 4151-4151.	6.6	2
342	Mechanisms of folate cofactors. Trends in Biochemical Sciences, 1977, 2, 161-163.	3.7	2

#	Article	IF	CITATIONS
343	Direct demonstration of the active salvage of preformed purines by murine tumors. Biochemical and Biophysical Research Communications, 1990, 170, 1164-1169.	1.0	2
344	[19] Expression of properly folded catalytic antibodies in Escherichia coli. Methods in Enzymology, 1995, 249, 507-519.	0.4	2
345	Dihydrofolate Reductase: Hydrogen Tunneling and Protein Motion. , 0, , 1439-1454.		2
346	Mechanisms: molecular machines. Current Opinion in Chemical Biology, 2011, 15, 577-579.	2.8	2
347	Open questions - in brief: Beyond -omics, missing motor proteins, and getting from molecules to organisms. BMC Biology, 2013, 11, 8.	1.7	2
348	Probing the molecular basis of resistance to pyrimethamine by site-directed mutagenesis. Journal of Medicinal Chemistry, 1992, 35, 2912-2915.	2.9	1
349	The Unexpected Catalytic Properties of a Heterodimer of GAR Transformylase. Bioorganic Chemistry, 2000, 28, 316-323.	2.0	1
350	Synthesis of two bi-functional ligands for the QUEST three-hybrid system. Tetrahedron Letters, 2000, 41, 7009-7012.	0.7	1
351	Investigation of an antibody-ligase. evidence for strain-induced catalysis. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 1321-1324.	1.0	1
352	Too fast for catalysis. Biocatalysis and Biotransformation, 2013, 31, 269-271.	1.1	1
353	Part II. Introduction. Annals of the New York Academy of Sciences, 1999, 870, 99-99.	1.8	Ο
354	Part II. Summary. Annals of the New York Academy of Sciences, 1999, 870, 156-156.	1.8	0
355	INTRODUCTION. Bioorganic Chemistry, 2000, 28, 315.	2.0	0
356	Unnatural Translation Initiation. ACS Chemical Biology, 2008, 3, 87-88.	1.6	0
357	Coupling DNA Unwinding Activity With Primer Synthesis in the Bacteriophage T4 Primosome. Biophysical Journal, 2010, 98, 66a-67a.	0.2	0
358	Thomas Bruice (1925–2019). Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22418-22419.	3.3	0
359	From Bioorganic Models to Cells. Annual Review of Biochemistry, 2021, 90, 57-76.	5.0	Ο
360	A Catalytic Antibody Uses a Multistep Kinetic Sequence. Novartis Foundation Symposium, 1991, 159, 4-12.	1.2	0

#	Article	IF	CITATIONS
361	Retracing Enzyme Evolution in the (betaalpha)(8)-Barrel Scaffold. Angewandte Chemie - International Edition, 2001, 40, 1854-1856.	7.2	Ο