Codrin Tugui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8943037/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Interpenetrating poly(urethane-urea)–polydimethylsiloxane networks designed as active elements in electromechanical transducers. Polymer Chemistry, 2016, 7, 2709-2719.	3.9	43
2	Dielectric silicone elastomers filled with in situ generated polar silsesquioxanes: Preparation, characterization and evaluation of electromechanical performance. Materials and Design, 2016, 106, 454-462.	7.0	29
3	Dielectric elastomers with dual piezo-electrostatic response optimized through chemical design for electromechanical transducers. Journal of Materials Chemistry C, 2017, 5, 824-834.	5.5	27
4	Stretchable Energy Harvesting Devices: Attempts To Produce High-Performance Electrodes. ACS Sustainable Chemistry and Engineering, 2017, 5, 7851-7858.	6.7	27
5	Ceramic nanotubes-based elastomer composites for applications in electromechanical transducers. Materials and Design, 2018, 141, 120-131.	7.0	27
6	Bimodal silicone interpenetrating networks sequentially built as electroactive dielectric elastomers. Journal of Materials Chemistry C, 2015, 3, 8963-8969.	5.5	26
7	All-silicone elastic composites with counter-intuitive piezoelectric response, designed for electromechanical applications. Journal of Materials Chemistry C, 2017, 5, 6997-7010.	5.5	25
8	Full silicone interpenetrating bi-networks with different organic groups attached to the silicon atoms. Polymer, 2015, 77, 312-322.	3.8	24
9	Highly stretchable composites from PDMS and polyazomethine fine particles. RSC Advances, 2015, 5, 102599-102609.	3.6	22
10	Dielectric elastomers based on silicones filled with transitional metal complexes. Composites Part B: Engineering, 2016, 93, 236-243.	12.0	22
11	Iron oxide nanoparticles as dielectric and piezoelectric enhancers for silicone elastomers. Smart Materials and Structures, 2017, 26, 105046.	3.5	22
12	Silicone dielectric elastomers optimized by crosslinking pattern – a simple approach to high-performance actuators. Polymer Chemistry, 2020, 11, 3271-3284.	3.9	19
13	Multi-stimuli responsive free-standing films of DR1- grafted silicones. Chemical Engineering Journal, 2020, 401, 126087.	12.7	18
14	Superparamagnetic amorphous iron oxide nanowires self-assembled into ordered layered structures. RSC Advances, 2015, 5, 62563-62570.	3.6	17
15	Goethite nanorods as a cheap and effective filler for siloxane nanocomposite elastomers. RSC Advances, 2015, 5, 45439-45445.	3.6	15
16	Conductive stretchable composites properly engineered to develop highly compliant electrodes for dielectric elastomer actuators. Smart Materials and Structures, 2018, 27, 105005.	3.5	15
17	From iron coordination compounds to metal oxide nanoparticles. Beilstein Journal of Nanotechnology, 2016, 7, 2074-2087.	2.8	14
18	Aging behavior of the silicone dielectric elastomers in a simulated marine environment. RSC Advances, 2016, 6, 8941-8955.	3.6	14

CODRIN TUGUI

#	Article	IF	CITATIONS
19	From ultra-high molecular weight polydimethylsiloxane to super-soft elastomer. European Polymer Journal, 2019, 120, 109243.	5.4	13
20	Preparation and characterisation of stacked planar actuators. Chemical Engineering Journal, 2019, 364, 217-225.	12.7	11
21	Changes induced in the properties of dielectric silicone elastomers by the incorporation of transition metal complexes. High Performance Polymers, 2016, 28, 915-926.	1.8	10
22	The synergistic effect of nitrile and jeffamine structural elements towards stretchable and high- <i>k</i> neat polyimide materials. Materials Chemistry Frontiers, 2021, 5, 7558-7579.	5.9	10
23	Elastic composites with PDMS matrix and polysulfone-supported silver nanoparticles as filler. Polymer, 2021, 217, 123480.	3.8	10
24	Soft silicone elastomers exhibiting large actuation strains. Journal of Applied Polymer Science, 2022, 139, .	2.6	10
25	Nanomaterials Developed by Processing Iron Coordination Compounds for Biomedical Application. Journal of Nanomaterials, 2019, 2019, 1-14.	2.7	9
26	Octakis(phenyl)â€ <scp>T8</scp> â€silsesquioxaneâ€filled silicone elastomers with enhanced electromechanical capability. Journal of Applied Polymer Science, 2021, 138, 50161.	2.6	9
27	From passive to emerging smart silicones. Reviews in Chemical Engineering, 2023, 39, 941-1003.	4.4	8
28	From Amorphous Silicones to Si-Containing Highly Ordered Polymers: Some Romanian Contributions in the Field. Polymers, 2021, 13, 1605.	4.5	7
29	Silver thin films generated by Pulsed Laser Deposition on plasma-treated surface of silicones to get dielectric elastomer transducers. Surface and Coatings Technology, 2019, 358, 282-292.	4.8	6
30	Bentonite as an active natural filler for silicone leading to piezoelectric-like response material. Journal of Materials Research and Technology, 2022, 17, 79-94.	5.8	5
31	Silicone elastomers with improved electro-mechanical performance using slide-ring polymers. Journal of Polymer Research, 2022, 29, .	2.4	4
32	Silicones with different crosslinking patterns: Assessment from the perspective of their suitability for biomaterials. Surfaces and Interfaces, 2022, 32, 102168.	3.0	1
33	New dielectric elastomers with improved properties for energy harvesting and actuation. , 2015, , .		0