

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8942951/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Adsorption Mechanisms of Organic Chemicals on Carbon Nanotubes. Environmental Science & Technology, 2008, 42, 9005-9013.	4.6	1,088
2	Adsorption and Hysteresis of Bisphenol A and 17α-Ethinyl Estradiol on Carbon Nanomaterials. Environmental Science & Technology, 2008, 42, 5480-5485.	4.6	405
3	Detecting Free Radicals in Biochars and Determining Their Ability to Inhibit the Germination and Growth of Corn, Wheat and Rice Seedlings. Environmental Science & Technology, 2014, 48, 8581-8587.	4.6	330
4	Enhanced adsorption of Cu(II) and Cd(II) by phosphoric acid-modified biochars. Environmental Pollution, 2017, 229, 846-853.	3.7	330
5	Degradation of <i>p</i> -Nitrophenol on Biochars: Role of Persistent Free Radicals. Environmental Science & Technology, 2016, 50, 694-700.	4.6	302
6	Contamination of rivers in Tianjin, China by polycyclic aromatic hydrocarbons. Environmental Pollution, 2005, 134, 97-111.	3.7	239
7	Adsorption and Desorption of Oxytetracycline and Carbamazepine by Multiwalled Carbon Nanotubes. Environmental Science & Technology, 2009, 43, 9167-9173.	4.6	221
8	Contribution of Different Sulfamethoxazole Species to Their Overall Adsorption on Functionalized Carbon Nanotubes. Environmental Science & Technology, 2010, 44, 3806-3811.	4.6	212
9	Engineered biochar – A sustainable solution for the removal of antibiotics from water. Chemical Engineering Journal, 2021, 405, 126926.	6.6	212
10	Norfloxacin Sorption and Its Thermodynamics on Surface-Modified Carbon Nanotubes. Environmental Science & Technology, 2010, 44, 978-984.	4.6	208
11	Colloidal Behavior of Aluminum Oxide Nanoparticles As Affected by pH and Natural Organic Matter. Langmuir, 2008, 24, 12385-12391.	1.6	192
12	Phosphoric acid pretreatment enhances the specific surface areas of biochars by generation of micropores. Environmental Pollution, 2018, 240, 1-9.	3.7	181
13	Formation and Physicochemical Characteristics of Nano Biochar: Insight into Chemical and Colloidal Stability. Environmental Science & Technology, 2018, 52, 10369-10379.	4.6	178
14	Applications and implications of manufactured nanoparticles in soils: a review. European Journal of Soil Science, 2012, 63, 437-456.	1.8	161
15	Sustainable aquaculture requires environmentalâ€friendly treatment strategies for fish diseases. Reviews in Aquaculture, 2020, 12, 943-965.	4.6	159
16	Photo-aging of polyvinyl chloride microplastic in the presence of natural organic acids. Water Research, 2020, 183, 116082.	5.3	156
17	Adsorption of ofloxacin and norfloxacin on carbon nanotubes: Hydrophobicity- and structure-controlled process. Journal of Hazardous Materials, 2012, 233-234, 89-96.	6.5	147
18	Environmentally persistent free radicals: Occurrence, formation mechanisms and implications. Environmental Pollution, 2019, 248, 320-331.	3.7	135

#	Article	IF	CITATIONS
19	Effect of biochar aging on surface characteristics and adsorption behavior of dialkyl phthalates. Environmental Pollution, 2015, 206, 502-509.	3.7	132
20	Dissolved Organic Matter Conformation and Its Interaction with Pyrene As Affected by Water Chemistry and Concentration. Environmental Science & Technology, 2008, 42, 1594-1599.	4.6	113
21	Distribution and speciation of metals (Cu, Zn, Cd, and Pb) in agricultural and non-agricultural soils near a stream upriver from the Pearl River, China. Environmental Pollution, 2013, 177, 64-70.	3.7	112
22	Degradation of <i>p</i> -Nitrophenol by Lignin and Cellulose Chars: H ₂ O ₂ -Mediated Reaction and Direct Reaction with the Char. Environmental Science & Technology, 2017, 51, 8972-8980.	4.6	108
23	Part V—sorption of pharmaceuticals and personal care products. Environmental Science and Pollution Research, 2009, 16, 106-116.	2.7	104
24	Negative Impacts of Biochars on Urease Activity: High pH, Heavy Metals, Polycyclic Aromatic Hydrocarbons, or Free Radicals?. Environmental Science & Technology, 2018, 52, 12740-12747.	4.6	104
25	Nonideal Binding between Dissolved Humic Acids and Polyaromatic Hydrocarbons. Environmental Science & Technology, 2007, 41, 6472-6478.	4.6	100
26	Adsorption of sulfamethoxazole on functionalized carbon nanotubes as affected by cations and anions. Environmental Pollution, 2011, 159, 2616-2621.	3.7	100
27	The role of ash content on bisphenol A sorption to biochars derived from different agricultural wastes. Chemosphere, 2017, 171, 66-73.	4.2	91
28	Partitioning and source diagnostics of polycyclic aromatic hydrocarbons in rivers in Tianjin, China. Environmental Pollution, 2007, 146, 492-500.	3.7	86
29	Increased Adsorption of Sulfamethoxazole on Suspended Carbon Nanotubes by Dissolved Humic Acid. Environmental Science & Technology, 2013, 47, 7722-7728.	4.6	85
30	The sorption of organic contaminants on biochars derived from sediments with high organic carbon content. Chemosphere, 2013, 90, 782-788.	4.2	79
31	Fast and slow adsorption of carbamazepine on biochar as affected by carbon structure and mineral composition. Science of the Total Environment, 2017, 579, 598-605.	3.9	77
32	Part IV—sorption of hydrophobic organic contaminants. Environmental Science and Pollution Research, 2008, 15, 554-564.	2.7	76
33	Overlooked Risks of Biochars: Persistent Free Radicals trigger Neurotoxicity in <i>Caenorhabditis elegans</i> . Environmental Science & Technology, 2018, 52, 7981-7987.	4.6	75
34	Using sewage sludge with high ash content for biochar production and Cu(II) sorption. Science of the Total Environment, 2020, 713, 136663.	3.9	75
35	Adsorption of ofloxacin on carbon nanotubes: Solubility, pH and cosolvent effects. Journal of Hazardous Materials, 2012, 211-212, 342-348.	6.5	74
36	Sulfamethoxazole sorption by sediment fractions in comparison to pyrene and bisphenol A. Environmental Pollution, 2010, 158, 2826-2832.	3.7	73

#	Article	IF	CITATIONS
37	Effect of physical forms of soil organic matter on phenanthrene sorption. Chemosphere, 2007, 68, 1262-1269.	4.2	70
38	An electron-scale comparative study on the adsorption of six divalent heavy metal cations on MnFe2O4@CAC hybrid: Experimental and DFT investigations. Chemical Engineering Journal, 2020, 381, 122656.	6.6	70
39	Distribution of sorbed phenanthrene and pyrene in different humic fractions of soils and importance of humin. Environmental Pollution, 2006, 143, 24-33.	3.7	69
40	Coadsorption of Cu and sulfamethoxazole on hydroxylized and graphitized carbon nanotubes. Science of the Total Environment, 2012, 427-428, 247-252.	3.9	69
41	Cation–Pi Interaction: A Key Force for Sorption of Fluoroquinolone Antibiotics on Pyrogenic Carbonaceous Materials. Environmental Science & Technology, 2017, 51, 13659-13667.	4.6	69
42	The sorption of heavy metals on thermally treated sediments with high organic matter content. Bioresource Technology, 2014, 160, 123-128.	4.8	66
43	The Overlooked Occurrence of Environmentally Persistent Free Radicals in an Area with Low-Rank Coal Burning, Xuanwei, China. Environmental Science & Technology, 2018, 52, 1054-1061.	4.6	66
44	The opposite impacts of Cu and Mg cations on dissolved organic matter-ofloxacin interaction. Environmental Pollution, 2012, 161, 76-82.	3.7	65
45	Coadsorption, desorption hysteresis and sorption thermodynamics of sulfamethoxazole and carbamazepine on graphene oxide and graphite. Carbon, 2013, 65, 243-251.	5.4	64
46	Characterization and Phenanthrene Sorption of Tea Leaf Powders. Journal of Agricultural and Food Chemistry, 2007, 55, 5718-5724.	2.4	63
47	Formation of environmentally persistent free radicals as the mechanism for reduced catechol degradation on hematite-silica surface under UV irradiation. Environmental Pollution, 2014, 188, 153-158.	3.7	60
48	Physi-chemical and sorption properties of biochars prepared from peanut shell using thermal pyrolysis and microwave irradiation. Environmental Pollution, 2017, 227, 372-379.	3.7	58
49	Spatially explicit analysis identifies significant potential for bioenergy with carbon capture and storage in China. Nature Communications, 2021, 12, 3159.	5.8	58
50	Formation of persistent free radicals in biochar derived from rice straw based on a detailed analysis of pyrolysis kinetics. Science of the Total Environment, 2020, 715, 136575.	3.9	57
51	Coupling adsorption and degradation in p-nitrophenol removal by biochars. Journal of Cleaner Production, 2020, 271, 122550.	4.6	55
52	Sorption of Cu2+ on humic acids sequentially extracted from a sediment. Chemosphere, 2015, 138, 657-663.	4.2	54
53	Limited role of biochars in nitrogen fixation through nitrate adsorption. Science of the Total Environment, 2017, 592, 758-765.	3.9	54
54	Effects of adding biochar on the properties and nitrogen bioavailability of an acidic soil. European Journal of Soil Science, 2017, 68, 559-572.	1.8	51

#	Article	IF	CITATIONS
55	Adsorption kinetics of 17α-ethinyl estradiol and bisphenol A on carbon nanomaterials. I. Several concerns regarding pseudo-first order and pseudo-second order models. Journal of Soils and Sediments, 2010, 10, 838-844.	1.5	49
56	Investigating interactions of phenanthrene with dissolved organic matter: Limitations of Stern–Volmer plot. Chemosphere, 2007, 69, 1555-1562.	4.2	48
57	The relative importance of different carbon structures in biochars to carbamazepine and bisphenol A sorption. Journal of Hazardous Materials, 2019, 373, 106-114.	6.5	48
58	Identifying structural characteristics of humic acid to static and dynamic fluorescence quenching of phenanthrene, 9-phenanthrol, and naphthalene. Water Research, 2017, 122, 337-344.	5.3	46
59	Environmental behavior of engineered biochars and their aging processes in soil. Biochar, 2019, 1, 339-351.	6.2	45
60	Key roles of electron cloud density and configuration in the adsorption of sulfonamide antibiotics on carbonaceous materials: Molecular dynamics and quantum chemical investigations. Applied Surface Science, 2021, 536, 147757.	3.1	45
61	Physicochemical and sorption properties of thermally-treated sediments with high organic matter content. Bioresource Technology, 2012, 103, 367-373.	4.8	44
62	Sorption kinetics of ofloxacin in soils and mineral particles. Environmental Pollution, 2012, 171, 185-190.	3.7	43
63	Enhanced Photoreduction of Nitro-aromatic Compounds by Hydrated Electrons Derived from Indole on Natural Montmorillonite. Environmental Science & amp; Technology, 2015, 49, 7784-7792.	4.6	42
64	Manufactured Nanoparticles and their Sorption of Organic Chemicals. Advances in Agronomy, 2010, , 137-181.	2.4	41
65	Cosorption of organic chemicals with different properties: Their shared and different sorption sites. Environmental Pollution, 2012, 160, 178-184.	3.7	41
66	Quantitative identification of dynamic and static quenching of ofloxacin by dissolved organic matter using temperature-dependent kinetic approach. Environmental Pollution, 2012, 161, 192-198.	3.7	41
67	Components and Persistent Free Radicals in the Volatiles during Pyrolysis of Lignocellulose Biomass. Environmental Science & Technology, 2020, 54, 13274-13281.	4.6	41
68	Competitive and Complementary Adsorption of Bisphenol A and 17α-Ethinyl Estradiol on Carbon Nanomaterials. Journal of Agricultural and Food Chemistry, 2010, 58, 8338-8343.	2.4	39
69	Multi-walled carbon nanotube dispersion by the adsorbed humic acids with different chemical structures. Environmental Pollution, 2015, 196, 292-299.	3.7	39
70	Carbon dioxide as a carrier gas and mixed feedstock pyrolysis decreased toxicity of sewage sludge biochar. Science of the Total Environment, 2020, 723, 137796.	3.9	39
71	A Comparative Study on the Formation of Environmentally Persistent Free Radicals (EPFRs) on Hematite and Goethite: Contribution of Various Catechol Degradation Byproducts. Environmental Science & Technology, 2019, 53, 13713-13719.	4.6	38
72	Functional Biochar and Its Balanced Design. ACS Environmental Au, 2022, 2, 115-127.	3.3	37

#	Article	IF	CITATIONS
73	P-nitrophenol degradation by pine-wood derived biochar: The role of redox-active moieties and pore structures. Science of the Total Environment, 2020, 741, 140431.	3.9	36
74	Persulfate adsorption and activation by carbon structure defects provided new insights into ofloxacin degradation by biochar. Science of the Total Environment, 2022, 806, 150968.	3.9	36
75	Co-sorption of ofloxacin and Cu(II) in soils before and after organic matter removal. Science of the Total Environment, 2014, 481, 209-216.	3.9	34
76	Contribution of coated humic acids calculated through their surface coverage on nano iron oxides for ofloxacin and norfloxacin sorption. Environmental Pollution, 2015, 204, 191-198.	3.7	34
77	Process regulation of microwave intensified synthesis of Y-type zeolite. Microporous and Mesoporous Materials, 2019, 284, 476-485.	2.2	34
78	An integrated study on the pyrolysis mecanism of peanut shell based on the kinetic analysis and solid/gas characterization. Bioresource Technology, 2021, 329, 124860.	4.8	33
79	Associations between endocrine-disrupting heavy metals in maternal hair and gestational diabetes mellitus: A nested case-control study in China. Environment International, 2021, 157, 106770.	4.8	32
80	Quantifying the dynamic fluorescence quenching of phenanthrene and ofloxacin by dissolved humic acids. Environmental Pollution, 2015, 196, 379-385.	3.7	31
81	Structural benefits of bisphenol S and its analogs resulting in their high sorption on carbon nanotubes and graphite. Environmental Science and Pollution Research, 2016, 23, 8976-8984.	2.7	31
82	Impact of concentration and species of sulfamethoxazole and ofloxacin on their adsorption kinetics on sediments. Chemosphere, 2017, 175, 123-129.	4.2	31
83	Mediation of rhodamine B photodegradation by biochar. Chemosphere, 2020, 256, 127082.	4.2	31
84	Benzene polycarboxylic acid — A useful marker for condensed organic matter, but not for only pyrogenic black carbon. Science of the Total Environment, 2018, 626, 660-667.	3.9	30
85	Wrinkle-induced high sorption makes few-layered black phosphorus a superior adsorbent for ionic organic compounds. Environmental Science: Nano, 2018, 5, 1454-1465.	2.2	30
86	Molecular markers of benzene polycarboxylic acids in describing biochar physiochemical properties and sorption characteristics. Environmental Pollution, 2018, 237, 541-548.	3.7	30
87	New insights on the understanding of the high adsorption of bisphenol compounds on reduced graphene oxide at high pH values via charge assisted hydrogen bond. Journal of Hazardous Materials, 2019, 371, 513-520.	6.5	30
88	Role of Ash Content in Biochar for Copper Immobilization. Environmental Engineering Science, 2016, 33, 962-969.	0.8	29
89	Transfer of polycyclic aromatic hydrocarbons from mother to fetus in relation to pregnancy complications. Science of the Total Environment, 2018, 636, 61-68.	3.9	29
90	Two-Compartment Sorption of Phenanthrene on Eight Soils with Various Organic Carbon Contents. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2006, 41, 1333-1347.	0.7	28

#	Article	IF	CITATIONS
91	The non-target organism Caenorhabditis elegans withstands the impact of sulfamethoxazole. Chemosphere, 2013, 93, 2373-2380.	4.2	28
92	Tannic acid promotes ion release of copper oxide nanoparticles: Impacts from solution pH change and complexation reactions. Water Research, 2017, 127, 59-67.	5.3	28
93	Can the properties of engineered nanoparticles be indicative of their functions and effects in plants?. Ecotoxicology and Environmental Safety, 2020, 205, 111128.	2.9	28
94	Phenol-rich fulvic acid as a water additive enhances growth, reduces stress, and stimulates the immune system of fish in aquaculture. Scientific Reports, 2021, 11, 174.	1.6	28
95	Sorption of phenanthrene by dissolved organic matter and its complex with aluminum oxide nanoparticles. Environmental Pollution, 2008, 156, 1021-1029.	3.7	27
96	Ofloxacin sorption in soils after long-term tillage: The contribution of organic and mineral compositions. Science of the Total Environment, 2014, 497-498, 665-670.	3.9	26
97	pH-dependent KOW provides new insights in understanding the adsorption mechanism of ionizable organic chemicals on carbonaceous materials. Science of the Total Environment, 2018, 618, 269-275.	3.9	26
98	Application of low dosage of copper oxide and zinc oxide nanoparticles boosts bacterial and fungal communities in soil. Science of the Total Environment, 2021, 757, 143807.	3.9	26
99	Adsorption kinetics of 17α-ethinyl estradiol and bisphenol A on carbon nanomaterials. II. Concentration-dependence. Journal of Soils and Sediments, 2010, 10, 845-854.	1.5	25
100	Adsorption of sulfamethoxazole on different types of carbon nanotubes in comparison to other natural adsorbents. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2010, 45, 1625-1634.	0.9	25
101	Adsorption mechanism of different organic chemicals on fluorinated carbon nanotubes. Chemosphere, 2016, 154, 258-265.	4.2	24
102	Temperature dependence of ofloxacin fluorescence quenching and complexation by Cu(II). Environmental Pollution, 2012, 171, 168-173.	3.7	22
103	Contribution of hydrophobic effect to the sorption of phenanthrene, 9-phenanthrol and 9, 10-phenanthrenequinone on carbon nanotubes. Chemosphere, 2017, 168, 739-747.	4.2	22
104	Homo-Conjugation of Low Molecular Weight Organic Acids Competes with Their Complexation with Cu(II). Environmental Science & amp; Technology, 2018, 52, 5173-5181.	4.6	22
105	Reaction of Substituted Phenols with Lignin Char: Dual Oxidative and Reductive Pathways Depending on Substituents and Conditions. Environmental Science & Technology, 2020, 54, 15811-15820.	4.6	21
106	Sorption and solubility of ofloxacin and norfloxacin in water–methanol cosolvent. Chemosphere, 2014, 103, 322-328.	4.2	20
107	Adsorption of bisphenol A on dispersed carbon nanotubes: Role of different dispersing agents. Science of the Total Environment, 2019, 655, 807-813.	3.9	20
108	The promoted dissolution of copper oxide nanoparticles by dissolved humic acid: Copper complexation over particle dispersion. Chemosphere, 2020, 245, 125612.	4.2	20

#	Article	IF	CITATIONS
109	Decisive role of adsorption affinity in antibiotic adsorption on a positively charged MnFe2O4@CAC hybrid. Science of the Total Environment, 2020, 745, 141019.	3.9	20
110	Associations between hair levels of trace elements and the risk of preterm birth among pregnant women: A prospective nested case-control study in Beijing Birth Cohort (BBC), China. Environment International, 2022, 158, 106965.	4.8	20
111	Generation Mechanism of Persistent Free Radicals in Lignocellulose-Derived Biochar: Roles of Reducible Carbonyls. Environmental Science & Technology, 2022, 56, 10638-10645.	4.6	20
112	Fluorescence quenching of fulvic acids by fullerene in water. Environmental Pollution, 2013, 172, 100-107.	3.7	19
113	Catechol degradation on hematite/silica–gas interface as affected by gas composition and the formation of environmentally persistent free radicals. Scientific Reports, 2016, 6, 24494.	1.6	19
114	Urban air pollution and health risks of parent and nitrated polycyclic aromatic hydrocarbons in two megacities, southwest China. Atmospheric Environment, 2017, 166, 441-453.	1.9	19
115	The contrasting role of minerals in biochars in bisphenol A and sulfamethoxazole sorption. Chemosphere, 2021, 264, 128490.	4.2	19
116	Reactive mineral removal relative to soil organic matter heterogeneity and implications for organic contaminant sorption. Environmental Pollution, 2017, 227, 49-56.	3.7	18
117	Real-World Emission Characteristics of Environmentally Persistent Free Radicals in PM _{2.5} from Residential Solid Fuel Combustion. Environmental Science & Technology, 2022, 56, 3997-4004.	4.6	17
118	Kinetics study of microwave enhanced reactions between diasporic bauxite and alkali solution. Journal of Alloys and Compounds, 2018, 749, 652-663.	2.8	16
119	Emission factors of environmentally persistent free radicals in PM2.5 from rural residential solid fuels combusted in a traditional stove. Science of the Total Environment, 2021, 773, 145151.	3.9	16
120	Mass Absorption Efficiency of Black Carbon from Residential Solid Fuel Combustion and Its Association with Carbonaceous Fractions. Environmental Science & Technology, 2021, 55, 10662-10671.	4.6	16
121	Dual roles of biochar redox property in mediating 2,4-dichlorophenol degradation in the presence of Fe3+ and persulfate. Chemosphere, 2021, 279, 130456.	4.2	16
122	External interference from ambient air pollution on using hair metal(loid)s for biomarker-based exposure assessment. Environment International, 2020, 137, 105584.	4.8	15
123	Reduction of silver ions to silver nanoparticles by biomass and biochar: Mechanisms and critical factors. Science of the Total Environment, 2021, 779, 146326.	3.9	15
124	Heterogeneous compositions of oxygen-containing functional groups on biochars and their different roles in rhodamine B degradation. Chemosphere, 2022, 292, 133518.	4.2	15
125	Biochar mitigates allelopathy through regulating allelochemical generation from plants and accumulation in soil. , 2022, 1, .		15
126	Nonlinear binding of phenanthrene to the extracted fulvic acid fraction in soil in comparison with other organic matter fractions and to the whole soil sample. Environmental Pollution, 2010, 158, 566-575.	3.7	14

#	Article	IF	CITATIONS
127	Formation of organo-mineral complexes as affected by particle size, pH, and dry - wet cycles. Soil Research, 2010, 48, 713.	0.6	14
128	Sorption comparison between phenanthrene and its degradation intermediates, 9,10-phenanthrenequinone and 9-phenanthrol in soils/sediments. Chemosphere, 2012, 86, 183-189.	4.2	14
129	Effects of Low-Molecular-Weight Organic Acids on Soil Micropores and Implication for Organic Contaminant Availability. Communications in Soil Science and Plant Analysis, 2014, 45, 1120-1132.	0.6	14
130	Sorption affinities of sulfamethoxazole and carbamazepine to two sorbents under co-sorption systems. Environmental Pollution, 2014, 194, 203-209.	3.7	14
131	The mechanisms and environmental implications of engineered nanoparticles dispersion. Science of the Total Environment, 2020, 722, 137781.	3.9	14
132	Organo-mineral complexes protect condensed organic matter as revealed by benzene-polycarboxylic acids. Environmental Pollution, 2020, 260, 113977.	3.7	13
133	Sample Purification for Analysis of Organochlorine Pesticides in Sediment and Fish Muscle. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2004, 39, 353-365.	0.7	12
134	Toxicity models of metal mixtures established on the basis of "additivity―and "interactions― Frontiers of Environmental Science and Engineering, 2017, 11, 1.	3.3	12
135	Co-contaminant effects on ofloxacin adsorption onto activated carbon, graphite, and humic acid. Environmental Science and Pollution Research, 2017, 24, 23834-23842.	2.7	12
136	Potential interference on the lipid metabolisms by serum copper in a women population: A repeated measurement study. Science of the Total Environment, 2021, 760, 143375.	3.9	12
137	Organic matter source and degradation as revealed by molecular biomarkers in agricultural soils of Yuanyang terrace. Scientific Reports, 2015, 5, 11074.	1.6	11
138	New insights provided by solvent relaxation NMR-measured surface area in liquids to explain phenolics sorption on silica nanoparticles. Environmental Science: Nano, 2017, 4, 577-584.	2.2	11
139	Anaerobic Dehalogenation by Reduced Aqueous Biochars. Environmental Science & Technology, 2020, 54, 15142-15150.	4.6	11
140	Phenanthrene sorption/desorption sequences provide new insight to explain high sorption coefficients in field studies. Chemosphere, 2011, 84, 1578-1583.	4.2	10
141	Organic contaminants and carbon nanoparticles: sorption mechanisms and impact parameters. Journal of Zhejiang University: Science A, 2014, 15, 606-617.	1.3	10
142	The conductivity and redox properties of pyrolyzed carbon mediate methanogenesis in paddy soils with ethanol as substrate. Science of the Total Environment, 2021, 795, 148906.	3.9	10
143	The concentration and chemical speciation of arsenic in the Nanpan River, the upstream of the Pearl River, China. Environmental Science and Pollution Research, 2016, 23, 6451-6458.	2.7	9
144	Protection of extractable lipid and lignin: Differences in undisturbed and cultivated soils detected by molecular markers. Chemosphere, 2018, 213, 314-322.	4.2	9

#	Article	IF	CITATIONS
145	Suspended state heteroaggregation kinetics of kaolinite and fullerene (nC60) in the presence of tannic acid: Effect of π-π interactions. Science of the Total Environment, 2020, 713, 136559.	3.9	9
146	Colloidal aggregation and structural assembly of aspect ratio variant goethite (α-FeOOH) with nC60 fullerene in environmental media. Environmental Pollution, 2016, 219, 1049-1059.	3.7	8
147	Emerging investigator series: dual role of organic matter in the anaerobic degradation of triclosan. Environmental Sciences: Processes and Impacts, 2017, 19, 499-506.	1.7	8
148	Organic matter protection by kaolinite over bio-decomposition as suggested by lignin and solvent-extractable lipid molecular markers. Science of the Total Environment, 2019, 647, 570-576.	3.9	8
149	New insights into the different adsorption kinetics of gallic acid and tannic acid on minerals via 1H NMR relaxation of bound water. Science of the Total Environment, 2021, 767, 144447.	3.9	8
150	Combining bulk characterization and benzene polycarboxylic acid molecular markers to describe biochar properties. Chemosphere, 2019, 227, 381-388.	4.2	7
151	Environmental persistent free radicals in diesel engine exhaust particles at different altitudes and engine speeds. Science of the Total Environment, 2021, 796, 148963.	3.9	7
152	Direct toxicity of environmentally persistent free radicals to nematode Caenorhabditis elegans after excluding the concomitant chemicals. Science of the Total Environment, 2022, 839, 156226.	3.9	7
153	Acid pretreatment increased lipid biomarker extractability: a case study to reveal soil organic matter input from rubber trees after longâ€ŧerm cultivation. European Journal of Soil Science, 2018, 69, 315-324.	1.8	6
154	Spontaneous changes in dissolved organic matter affect the bio-removal of steroid estrogens. Science of the Total Environment, 2019, 689, 616-624.	3.9	6
155	Heating methods generate different amounts of persistent free radicals from unsaturated fatty acids. Science of the Total Environment, 2019, 672, 16-22.	3.9	6
156	CuO and TiO2 particles generated more stable and stronger EPFRs in dark than under UV-irradiation. Science of the Total Environment, 2021, 775, 145555.	3.9	6
157	Uptake of Copper Complexed to EDTA, Diaminoethane, Oxalic Acid, or Tartaric acid by Neon Tetras (Paracheirodon innesi). Ecotoxicology and Environmental Safety, 2002, 53, 317-322.	2.9	5
158	Estimation of conditional stability constant for copper binding to fish gill surface with consideration of chemistry of the fish gill microenvironment. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2002, 133, 219-226.	1.3	5
159	Investigating River Pollution Flowing into Dianchi Lake Using a Combination of GC–MS Analysis and Toxicological Tests. Bulletin of Environmental Contamination and Toxicology, 2014, 92, 67-70.	1.3	5
160	Sorption of sulfamethoxazole on biochars of varying mineral content. Environmental Sciences: Processes and Impacts, 2020, 22, 1287-1294.	1.7	5
161	Isolation and Sorption Behavior of Humic Acid from Zhongdian Peat of Yunnan Province, China. Pedosphere, 2009, 19, 606-614.	2.1	4
162	Fertilizer application in rural cropland drives cadmium enrichment in bats dwelling in an urban area. Environmental Pollution, 2018, 242, 970-975.	3.7	4

#	Article	IF	CITATIONS
163	Tannic acid- and cation-mediated interfacial self-assembly and epitaxial growth of fullerene (nC60) and kaolinite binary graphitic aggregates. Journal of Colloid and Interface Science, 2019, 556, 717-725.	5.0	4
164	The molecular markers provide complementary information for biochar characterization before and after HNO3/H2SO4 oxidation. Chemosphere, 2022, 301, 134422.	4.2	4
165	Adsorption and Release of Phosphates in the Case of Dianchi Sediments. Journal of Chemical Engineering of Japan, 2010, 43, 913-920.	0.3	3
166	A microbial electrochemical hybrid system for simultaneous sludge treatment, acid production, and desalination. Science of the Total Environment, 2021, 760, 144153.	3.9	3
167	Inherent Minerals Facilitated Bisphenol A Sorption by Biochar: A Key Force by Complexation. ACS ES&T Water, 2022, 2, 184-194.	2.3	3
168	Role of NOM–hematite nanoparticle complexes and organic and inorganic cations in the coherence of silica and clay particles: evaluation based on nanoscale forces and molecular self-assembly. Environmental Science: Nano, 2021, 8, 822-836.	2.2	2
169	Sorption Comparison between Pharmaceuticals and Hydrophobic Organic Chemicals in Soils and Sediments. , 2013, , 323-357.		2
170	Molecular clusters played an important role in the adsorption of polycyclic aromatic hydrocarbons (PAHs) on carbonaceous materials. Chemosphere, 2022, 302, 134772.	4.2	2
171	Generation of environmentally persistent free radicals on faceted TiO ₂ in an ambient environment: roles of crystalline surface structures. Environmental Science: Nano, 2022, 9, 2521-2533.	2.2	2
172	Response to Comment on "Adsorption and Desorption of Oxytetracycline and Carbamazepine by Multiwalled Carbon Nanotubes― Environmental Science & Technology, 2010, 44, 4829-4829.	4.6	1
173	The exposed hematite surface and the generation of environmentally persistent free radicals during catechol degradation. Environmental Sciences: Processes and Impacts, 2021, 23, 109-116.	1.7	1
174	Chinese virtual issue. European Journal of Soil Science, 2012, 63, 773-775.	1.8	0
175	Nonideal Interactions Between Organic Contaminants and Dissolved Organic Matter. SSSA Special Publication Series, 0, , 219-235.	0.2	0
176	The Sorption of Sulfamethoxazole on Biochars Derived from a Sediment with High Organic Matter Content. , 2013, , 979-981.		0
177	Nanoparticles in soil. , 2022, , .		0

178 The role of mineral compositions in biochar stability and reactivity. , 2022, , 165-180.