Emma L. Schymanski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/894295/publications.pdf Version: 2024-02-01

FNAMA L SCHVMANSKI

#	Article	IF	CITATIONS
1	Discovering pesticides and their TPs in Luxembourg waters using open cheminformatics approaches. Environment International, 2022, 158, 106885.	10.0	21
2	patRoon 2.0: Improved non-target analysis workflows including automated transformation product screening. Journal of Open Source Software, 2022, 7, 4029.	4.6	10
3	FAIRifying the exposome journal: Templates for chemical structures and transformations. Exposome, 2022, 2, .	2.8	10
4	Development and Application of an LC-MS/MS Untargeted Exposomics Method with a Separated Pooled Quality Control Strategy. Molecules, 2022, 27, 2580.	3.8	4
5	The Next Frontier of Environmental Unknowns: Substances of Unknown or Variable Composition, Complex Reaction Products, or Biological Materials (UVCBs). Environmental Science & Technology, 2022, 56, 7448-7466.	10.0	29
6	Extraction of chemical structures from literature and patent documents using open access chemistry toolkits: a case study with PFAS. , 2022, 1, 490-501.		11
7	Communicating Confidence of Per- and Polyfluoroalkyl Substance Identification via High-Resolution Mass Spectrometry. Environmental Science and Technology Letters, 2022, 9, 473-481.	8.7	61
8	Studying the Parkinson's disease metabolome and exposome in biological samples through different analytical and cheminformatics approaches: a pilot study. Analytical and Bioanalytical Chemistry, 2022, 414, 7399-7419.	3.7	12
9	Studying Charge Migration Fragmentation of Sodiated Precursor Ions in Collision-Induced Dissociation at the Library Scale. Journal of the American Society for Mass Spectrometry, 2021, 32, 180-186.	2.8	4
10	Empowering large chemical knowledge bases for exposomics: PubChemLite meets MetFrag. Journal of Cheminformatics, 2021, 13, 19.	6.1	63
11	Retrospective non-target analysis to support regulatory water monitoring: from masses of interest to recommendations via in silico workflows. Environmental Sciences Europe, 2021, 33, .	5.5	18
12	FAIR chemical structures in the Journal of Cheminformatics. Journal of Cheminformatics, 2021, 13, 50.	6.1	19
13	Occurrence and Distribution of Pharmaceuticals and Their Transformation Products in Luxembourgish Surface Waters. ACS Environmental Au, 2021, 1, 58-70.	7.0	13
14	Development and Application of Liquid Chromatographic Retention Time Indices in HRMS-Based Suspect and Nontarget Screening. Analytical Chemistry, 2021, 93, 11601-11611.	6.5	79
15	patRoon: open source software platform for environmental mass spectrometry based non-target screening. Journal of Cheminformatics, 2021, 13, 1.	6.1	136
16	Historical exposomics and high resolution mass spectrometry. Exposome, 2021, 1, .	2.8	11
17	Evaluation of reverse osmosis drinking water treatment of riverbank filtrate using bioanalytical tools and non-target screening. Environmental Science: Water Research and Technology, 2020, 6, 103-116.	2.4	21
18	Improving Target and Suspect Screening High-Resolution Mass Spectrometry Workflows in Environmental Analysis by Ion Mobility Separation. Environmental Science & Technology, 2020, 54, 15120-15131.	10.0	69

Emma L. Schymanski

#	Article	IF	CITATIONS
19	The exposome and health: Where chemistry meets biology. Science, 2020, 367, 392-396.	12.6	499
20	Tracking complex mixtures of chemicals in our changing environment. Science, 2020, 367, 388-392.	12.6	390
21	A European proposal for quality control and quality assurance of tandem mass spectral libraries. Environmental Sciences Europe, 2020, 32, .	5.5	53
22	Connecting environmental exposure and neurodegeneration using cheminformatics and high resolution mass spectrometry: potential and challenges. Environmental Sciences: Processes and Impacts, 2019, 21, 1426-1445.	3.5	13
23	The metaRbolomics Toolbox in Bioconductor and beyond. Metabolites, 2019, 9, 200.	2.9	64
24	Supporting non-target identification by adding hydrogen deuterium exchange MS/MS capabilities to MetFrag. Analytical and Bioanalytical Chemistry, 2019, 411, 4683-4700.	3.7	14
25	Nontarget Screening Reveals Time Trends of Polar Micropollutants in a Riverbank Filtration System. Environmental Science & Technology, 2019, 53, 7584-7594.	10.0	70
26	Exploring open cheminformatics approaches for categorizing per- and polyfluoroalkyl substances (PFASs). Environmental Sciences: Processes and Impacts, 2019, 21, 1835-1851.	3.5	25
27	Annotating Nontargeted LC-HRMS/MS Data with Two Complementary Tandem Mass Spectral Libraries. Metabolites, 2019, 9, 3.	2.9	24
28	Exploring the Potential of a Global Emerging Contaminant Early Warning Network through the Use of Retrospective Suspect Screening with High-Resolution Mass Spectrometry. Environmental Science & Technology, 2018, 52, 5135-5144.	10.0	101
29	Dark matter in host-microbiome metabolomics: Tackling the unknowns–A review. Analytica Chimica Acta, 2018, 1037, 13-27.	5.4	108
30	Expanding the Use of Spectral Libraries in Proteomics. Journal of Proteome Research, 2018, 17, 4051-4060.	3.7	47
31	Mind the Cap: Mapping Mass Spectral Databases in Genome-Scale Metabolic Networks Reveals Poorly Covered Areas. Metabolites, 2018, 8, 51.	2.9	51
32	Open Science for Identifying "Known Unknown―Chemicals. Environmental Science & Technology, 2017, 51, 5357-5359.	10.0	53
33	Integrating ion mobility spectrometry into mass spectrometry-based exposome measurements: what can it add and how far can it go?. Bioanalysis, 2017, 9, 81-98.	1.5	66
34	Nontarget Screening with High Resolution Mass Spectrometry in the Environment: Ready to Go?. Environmental Science & Technology, 2017, 51, 11505-11512.	10.0	453
35	Critical Assessment of Small Molecule Identification 2016: automated methods. Journal of Cheminformatics, 2017, 9, 22.	6.1	122
36	SPLASH, a hashed identifier for mass spectra. Nature Biotechnology, 2016, 34, 1099-1101.	17.5	61

#	Article	IF	CITATIONS
37	MetFrag relaunched: incorporating strategies beyond in silico fragmentation. Journal of Cheminformatics, 2016, 8, 3.	6.1	665
38	Systematic Exploration of Biotransformation Reactions of Amine-Containing Micropollutants in Activated Sludge. Environmental Science & Technology, 2016, 50, 2908-2920.	10.0	111
39	Effect-directed analysis supporting monitoring of aquatic environments — An in-depth overview. Science of the Total Environment, 2016, 544, 1073-1118.	8.0	288
40	Mass spectral databases for LC/MS- and GC/MS-based metabolomics: State of the field and future prospects. TrAC - Trends in Analytical Chemistry, 2016, 78, 23-35.	11.4	404
41	Future water quality monitoring — Adapting tools to deal with mixtures of pollutants in water resource management. Science of the Total Environment, 2015, 512-513, 540-551.	8.0	243
42	Multicriteria Approach To Select Polyaromatic River Mutagen Candidates. Environmental Science & Technology, 2015, 49, 2959-2968.	10.0	24
43	Retention projection enables accurate calculation of liquid chromatographic retention times across labs and methods. Journal of Chromatography A, 2015, 1412, 43-51.	3.7	47
44	Non-target screening with high-resolution mass spectrometry: critical review using a collaborative trial on water analysis. Analytical and Bioanalytical Chemistry, 2015, 407, 6237-6255.	3.7	489
45	Extended Suspect and Non-Target Strategies to Characterize Emerging Polar Organic Contaminants in Raw Wastewater with LC-HRMS/MS. Environmental Science & Technology, 2015, 49, 12333-12341.	10.0	263
46	Prioritizing Unknown Transformation Products from Biologically-Treated Wastewater Using High-Resolution Mass Spectrometry, Multivariate Statistics, and Metabolic Logic. Analytical Chemistry, 2015, 87, 12121-12129.	6.5	101
47	Solving CASMI 2013 with MetFrag, MetFusion and MOLGEN-MS/MS. Mass Spectrometry, 2014, 3, S0036-S0036.	0.6	16
48	Exploring the Behaviour of Emerging Contaminants in the Water Cycle using the Capabilities of High Resolution Mass Spectrometry. Chimia, 2014, 68, 793.	0.6	15
49	Suspect and nontarget screening approaches to identify organic contaminant records in lake sediments. Analytical and Bioanalytical Chemistry, 2014, 406, 7323-7335.	3.7	91
50	Metabolite identification: are you sure? And how do your peers gauge your confidence?. Metabolomics, 2014, 10, 350-353.	3.0	205
51	Biotransformation of Benzotriazoles: Insights from Transformation Product Identification and Compound-Specific Isotope Analysis. Environmental Science & Technology, 2014, 48, 4435-4443.	10.0	101
52	Strategies to Characterize Polar Organic Contamination in Wastewater: Exploring the Capability of High Resolution Mass Spectrometry. Environmental Science & Technology, 2014, 48, 1811-1818.	10.0	333
53	Identifying Small Molecules via High Resolution Mass Spectrometry: Communicating Confidence. Environmental Science & Technology, 2014, 48, 2097-2098.	10.0	2,300
54	Integrated biological–chemical approach for the isolation and selection of polyaromatic mutagens in surface waters. Analytical and Bioanalytical Chemistry, 2013, 405, 9101-9112.	3.7	21

Emma L. Schymanski

#	Article	IF	CITATIONS
55	Automatic recalibration and processing of tandem mass spectra using formula annotation. Journal of Mass Spectrometry, 2013, 48, 89-99.	1.6	87
56	Small Molecule Identification with MOLGEN and Mass Spectrometry. Metabolites, 2013, 3, 440-462.	2.9	32
57	The Critical Assessment of Small Molecule Identification (CASMI): Challenges and Solutions. Metabolites, 2013, 3, 517-538.	2.9	35
58	CASMI: And the Winner is Metabolites, 2013, 3, 412-439.	2.9	30
59	Consensus Structure Elucidation Combining GC/EI-MS, Structure Generation, and Calculated Properties. Analytical Chemistry, 2012, 84, 3287-3295.	6.5	57
60	Automated Strategies To Identify Compounds on the Basis of GC/EI-MS and Calculated Properties. Analytical Chemistry, 2011, 83, 903-912.	6.5	33
61	Application of preparative capillary gas chromatography (pcGC), automated structure generation and mutagenicity prediction to improve effect-directed analysis of genotoxicants in a contaminated groundwater. Environmental Science and Pollution Research, 2010, 17, 885-897.	5.3	31
62	Identification of a phytotoxic photo-transformation product of diclofenac using effect-directed analysis. Environmental Pollution, 2010, 158, 1461-1466.	7.5	69
63	Matching Structures to Mass Spectra Using Fragmentation Patterns: Are the Results As Good As They Look?. Analytical Chemistry, 2009, 81, 3608-3617.	6.5	60
64	Integrated analytical and computer tools for structure elucidation in effect-directed analysis. TrAC - Trends in Analytical Chemistry, 2009, 28, 550-561.	11.4	52
65	How to confirm identified toxicants in effect-directed analysis. Analytical and Bioanalytical Chemistry, 2008, 390, 1959-1973.	3.7	91
66	The use of MS classifiers and structure generation to assist in the identification of unknowns in effect-directed analysis. Analytica Chimica Acta, 2008, 615, 136-147.	5.4	58
67	ELIXIR and Toxicology: a community in development. F1000Research, 0, 10, 1129.	1.6	3