Christian Engelbrekt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8942571/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electronic structure modulation with ultrafine Fe3O4 nanoparticles on 2D Ni-based metal-organic framework layers for enhanced oxygen evolution reaction. Journal of Energy Chemistry, 2022, 65, 78-88.	7.1	41
2	Complex singleâ€molecule and molecular scale entities in electrochemical environments: Mechanisms and challenges. Electrochemical Science Advances, 2022, 2, e2100157.	1.2	1
3	Area determination with pile-up and sink-in in nanoindentation of oxygen containing titanium. Materials Today Communications, 2022, 30, 103218.	0.9	5
4	Synthesis and Structure of a Two-Dimensional Palladium Oxide Network on Reduced Graphene Oxide. Nano Letters, 2022, 22, 4854-4860.	4.5	3
5	Electrochemistry of complex molecular and biomolecular scale entities. Current Opinion in Electrochemistry, 2021, 26, 100670.	2.5	0
6	Voltammetry and Singleâ€Molecule In Situ Scanning Tunnelling Microscopy of the Redox Metalloenzyme Human Sulfite Oxidase. ChemElectroChem, 2021, 8, 164-171.	1.7	9
7	Bifunctional and Self-Supported NiFeP-Layer-Coated NiP Rods for Electrochemical Water Splitting in Alkaline Solution. ACS Applied Materials & amp; Interfaces, 2021, 13, 23702-23713.	4.0	69
8	Three-dimensional hollow nitrogen-doped carbon shells enclosed monodisperse CoP nanoparticles for long cycle-life sodium storage. Electrochimica Acta, 2021, 395, 139112.	2.6	19
9	Plasma Exosome-Enriched Extracellular Vesicles From Lactating Mothers With Type 1 Diabetes Contain Aberrant Levels of miRNAs During the Postpartum Period. Frontiers in Immunology, 2021, 12, 744509.	2.2	13
10	Starch Capped Atomically Thin CuS Nanocrystals for Efficient Photothermal Therapy. Small, 2021, 17, e2103461.	5.2	25
11	Starch Capped Atomically Thin CuS Nanocrystals for Efficient Photothermal Therapy (Small 47/2021). Small, 2021, 17, 2170249.	5.2	2
12	Bilirubin oxidase oriented on novel type three-dimensional biocathodes with reduced graphene aggregation for biocathode. Biosensors and Bioelectronics, 2020, 167, 112500.	5.3	20
13	Recent Progress of Twoâ€Dimensional Metalâ€Organic Frameworks and Their Derivatives for Oxygen Evolution Electrocatalysis. ChemElectroChem, 2020, 7, 4695-4712.	1.7	21
14	Sizeâ€Dependent and Selfâ€Catalytic Gold@Prussian Blue Nanoparticles for the Electrochemical Detection of Hydrogen Peroxide. ChemElectroChem, 2020, 7, 3818-3823.	1.7	12
15	Efficient Plasmon-Mediated Energy Funneling to the Surface of Au@Pt Core–Shell Nanocrystals. ACS Nano, 2020, 14, 5061-5074.	7.3	64
16	Development of graphene-based enzymatic biofuel cells: A minireview. Bioelectrochemistry, 2020, 134, 107537.	2.4	36
17	Chemistry of cysteine assembly on Au(100): electrochemistry, <i>in situ</i> STM and molecular modeling. Nanoscale, 2019, 11, 17235-17251.	2.8	9
18	Well-defined cobalt sulfide nanoparticles locked in 3D hollow nitrogen-doped carbon shells for superior lithium and sodium storage. Energy Storage Materials, 2019, 18, 114-124.	9.5	62

CHRISTIAN ENGELBREKT

#	Article	IF	CITATIONS
19	Three-Dimensional Sulfite Oxidase Bioanodes Based on Graphene Functionalized Carbon Paper for Sulfite/O ₂ Biofuel Cells. ACS Catalysis, 2019, 9, 6543-6554.	5.5	34
20	Implications of Byproduct Chemistry in Nanoparticle Synthesis. Journal of Physical Chemistry C, 2019, 123, 25402-25411.	1.5	2
21	Effective synthetic strategy for Zn _{0.76} Co _{0.24} S encapsulated in stabilized N-doped carbon nanoarchitecture towards ultra-long-life hybrid supercapacitors. Journal of Materials Chemistry A, 2019, 7, 14670-14680.	5.2	59
22	Tailored Electron Transfer Pathways in Au _{core} /Pt _{shell} –Graphene Nanocatalysts for Fuel Cells. Advanced Energy Materials, 2018, 8, 1702609.	10.2	66
23	Chemically controlled interfacial nanoparticle assembly into nanoporous gold films for electrochemical applications. Journal of Materials Chemistry A, 2018, 6, 556-564.	5.2	12
24	A straight forward approach to electrodeposit tungsten disulfide/poly(3,4-ethylenedioxythiophene) composites onto nanoporous gold for the hydrogen evolution reaction. Applied Surface Science, 2017, 410, 308-314.	3.1	23
25	Graphene encapsulated Fe ₃ O ₄ nanorods assembled into a mesoporous hybrid composite used as a high-performance lithium-ion battery anode material. Materials Chemistry Frontiers, 2017, 1, 1185-1193.	3.2	41
26	Side Effect of Good's Buffers on Optical Properties of Gold Nanoparticle Solutions. ChemElectroChem, 2016, 3, 1212-1218.	1.7	3
27	A Multimethod Approach for Investigating Algal Toxicity of Platinum Nanoparticles. Environmental Science & Technology, 2016, 50, 10635-10643.	4.6	65
28	Construction of Insulin 18â€mer Nanoassemblies Driven by Coordination to Iron(II) and Zinc(II) Ions at Distinct Sites. Angewandte Chemie - International Edition, 2016, 55, 2378-2381.	7.2	11
29	Construction of Insulin 18â€mer Nanoassemblies Driven by Coordination to Iron(II) and Zinc(II) Ions at Distinct Sites. Angewandte Chemie, 2016, 128, 2424-2427.	1.6	3
30	Reagentâ€Free Synthesis and Plasmonic Antioxidation of Unique Nanostructured Metal–Metal Oxide Core–Shell Microfibers. Advanced Materials, 2016, 28, 4097-4104.	11.1	21
31	Atomically thin Pt shells on Au nanoparticle cores: facile synthesis and efficient synergetic catalysis. Journal of Materials Chemistry A, 2016, 4, 3278-3286.	5.2	45
32	Graphene-supported platinum catalysts for fuel cells. Science Bulletin, 2015, 60, 864-876.	4.3	88
33	Copper oxide as efficient catalyst for oxidative dehydrogenation of alcohols with air. Catalysis Science and Technology, 2015, 5, 2467-2477.	2.1	123
34	Tuning the composition of metastable Co Ni Mg100â^'â~'(OH)(OCH3) nanoplates for optimizing robust methane dry reforming catalyst. Journal of Catalysis, 2015, 330, 106-119.	3.1	67
35	Hydrogen evolution at nanoporous gold/tungsten sulfide composite film and its optimization. Electrochimica Acta, 2015, 173, 393-398.	2.6	32
36	Supported Rh-phosphine complex catalysts for continuous gas-phase decarbonylation of aldehydes. Dalton Transactions, 2014, 43, 17230-17235.	1.6	10

CHRISTIAN ENGELBREKT

#	Article	IF	CITATIONS
37	Selective synthesis of clinoatacamite Cu2(OH)3Cl and tenorite CuO nanoparticles by pH control. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	28
38	Graphene controlled H- and J-stacking of perylene dyes into highly stable supramolecular nanostructures for enhanced photocurrent generation. Nanoscale, 2014, 6, 10516-10523.	2.8	23
39	Highly selective formation of imines catalyzed by silver nanoparticles supported on alumina. Chinese Journal of Catalysis, 2014, 35, 670-676.	6.9	19
40	The challenges of testing metal and metal oxide nanoparticles in algal bioassays: titanium dioxide and gold nanoparticles as case studies. Nanotoxicology, 2013, 7, 1082-1094.	1.6	62
41	Complexity of Gold Nanoparticle Formation Disclosed by Dynamics Study. Journal of Physical Chemistry C, 2013, 117, 11818-11828.	1.5	28
42	Au-Biocompatible metallic nanostructures in metalloprotein electrochemistry and electrocatalysis. Journal of Materials Chemistry, 2012, 22, 13877.	6.7	8
43	Characterizing the Kinetics of Nanoparticleâ€Catalyzed Reactions by Surfaceâ€Enhanced Raman Scattering. Angewandte Chemie - International Edition, 2012, 51, 7592-7596.	7.2	157
44	1.7 nm Platinum Nanoparticles: Synthesis with Glucose Starch, Characterization and Catalysis. ChemPhysChem, 2010, 11, 2844-2853.	1.0	22
45	Green synthesis of gold nanoparticles with starch–glucose and application in bioelectrochemistry. Journal of Materials Chemistry, 2009, 19, 7839.	6.7	165
46	Silica Shell Growth on Vitreophobic Gold Nanoparticles Probed by Plasmon Resonance Dynamics. Journal of Physical Chemistry C, 0, , .	1.5	3