Dayang Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8942249/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Demonstrating the Interfacial Polymer Thermal Transition from Coil-to-Globule to Coil-to-Stretch under Shear Flow Using SFG and MD Simulation. Journal of Physical Chemistry Letters, 2022, , 1617-1627.	4.6	3
2	Hydrogel-assisted delivery of lipophilic molecules into aqueous medium for transdermal medication based on environment-specific, regioselective adsorption of graphene oxides. Journal of Materials Chemistry B, 2021, 9, 1804-1810.	5.8	2
3	Zero-dimensional plate-shaped copper halide crystals with green-yellow emissions. Materials Advances, 2021, 2, 3744-3751.	5.4	12
4	Biofouling-Inspired Growth of Superhydrophilic Coating of Polyacrylic Acid on Hydrophobic Surfaces for Excellent Anti-Fouling. ACS Macro Letters, 2021, 10, 354-358.	4.8	15
5	Synthesis of Uniform Gold Nanorods with Large Width to Realize Ultralow SERS Detection. Chemistry - A European Journal, 2021, 27, 7549-7560.	3.3	3
6	Tetrabutylammonium bromide assisted preparation of monodispersed submicrometer silica particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 614, 126171.	4.7	4
7	Low-Concentration Salt Solution Changes the Interfacial Molecular Behavior of Polyelectrolyte Brushes. Macromolecules, 2021, 54, 6006-6013.	4.8	11
8	Bioinspired, Nanostructure-Amplified, Subcutaneous Light Harvesting to Power Implantable Biomedical Electronics. ACS Nano, 2021, 15, 12475-12482.	14.6	11
9	Color Tunable Selfâ€Trapped Emissions from Leadâ€Free All Inorganic IAâ€ŀB Bimetallic Halides Csâ€Agâ€X (X	= Cl,) Ţj ĔTQ	2q1_1 0.7843
10	Counterionâ€Dictated Selfâ€Cleaning Behavior of Polycation Coating upon Water Action: Macroscopic Dissection of Hydration of Anions. Angewandte Chemie - International Edition, 2020, 59, 14466-14472.	13.8	20
11	Counterionâ€Dictated Self leaning Behavior of Polycation Coating upon Water Action: Macroscopic Dissection of Hydration of Anions. Angewandte Chemie, 2020, 132, 14574-14580.	2.0	0
12	Rationalized Fabrication of Structure-Tailored Multishelled Hollow Silica Spheres. Chemistry of Materials, 2019, 31, 7470-7477.	6.7	25
13	Using Hydrogel to Diversify the Adaptability and Applicability of Functional Nanoparticles: From Nanotech-Flavored Jellies to Artificial Enzymes. Langmuir, 2019, 35, 8612-8628.	3.5	5
14	Realizing a Record Photothermal Conversion Efficiency of Spiky Gold Nanoparticles in the Second Near-Infrared Window by Structure-Based Rational Design. Chemistry of Materials, 2018, 30, 2709-2718.	6.7	85
15	Simple Synthesis of Au–Pd Alloy Nanowire Networks as Macroscopic, Flexible Electrocatalysts with Excellent Performance. ACS Applied Materials & Interfaces, 2018, 10, 602-613.	8.0	36
16	Water-Borne Perovskite Quantum Dot-Loaded, Polystyrene Latex Ink. Frontiers in Chemistry, 2018, 6, 453.	3.6	7
17	Van der Waals Emulsions: Emulsions Stabilized by Surfaceâ€Inactive, Hydrophilic Particles via van der Waals Attraction. Angewandte Chemie - International Edition, 2018, 57, 9510-9514.	13.8	24
18	Hydrophobicâ€Forceâ€Driven Removal of Organic Compounds from Water by Reduced Graphene Oxides Generated in Agarose Hydrogels. Angewandte Chemie - International Edition, 2018, 57, 11177-11181.	13.8	49

#	Article	IF	CITATIONS
19	Hydrophobicâ€Forceâ€Driven Removal of Organic Compounds from Water by Reduced Graphene Oxides Generated in Agarose Hydrogels. Angewandte Chemie, 2018, 130, 11347-11351.	2.0	8
20	Phase Engineering of Hydrophobic Meso-Environments in Silica Particles for Technical Performance Enrichment. Langmuir, 2018, 34, 7428-7435.	3.5	3
21	Van der Waals Emulsions: Emulsions Stabilized by Surfaceâ€Inactive, Hydrophilic Particles via van der Waals Attraction. Angewandte Chemie, 2018, 130, 9654-9658.	2.0	6
22	Advanced Colloidal Lithography Beyond Surface Patterning. Advanced Materials Interfaces, 2017, 4, 1600271.	3.7	87
23	Unraveling the Growth Mechanism of Silica Particles in the Stöber Method: In Situ Seeded Growth Model. Langmuir, 2017, 33, 5879-5890.	3.5	136
24	A Simple Nanocellulose Coating for Selfâ€Cleaning upon Water Action: Molecular Design of Stable Surface Hydrophilicity. Angewandte Chemie - International Edition, 2017, 56, 9053-9057.	13.8	73
25	A Simple Nanocellulose Coating for Selfâ€Cleaning upon Water Action: Molecular Design of Stable Surface Hydrophilicity. Angewandte Chemie, 2017, 129, 9181-9185.	2.0	11
26	Revitalizing spherical Au@Pd nanoparticles with controlled surface-defect density as high performance electrocatalysts. Journal of Materials Chemistry A, 2017, 5, 6992-7000.	10.3	16
27	Promoting charge transfer in hyperbranched, trisoctahedral-shaped core–shell Au@PdPt nanoparticles by facet-dependent construction of transition layers as high performance electrocatalysts. Journal of Materials Chemistry A, 2017, 5, 18878-18887.	10.3	24
28	Hydrogelâ€Assisted Transfer of Graphene Oxides into Nonpolar Organic Media for Oil Decontamination. Angewandte Chemie - International Edition, 2016, 55, 6853-6857.	13.8	31
29	Hydrogelâ€Assisted Transfer of Graphene Oxides into Nonpolar Organic Media for Oil Decontamination. Angewandte Chemie, 2016, 128, 6967-6971.	2.0	8
30	Synthesis of composition and size controlled AuAg alloy nanocrystals via Fe ²⁺ -assisted citrate reduction. CrystEngComm, 2016, 18, 7154-7162.	2.6	7
31	High–Yield Production of Uniform Gold Nanoparticles with Sizes from 31 to 577 nm via Oneâ€Pot Seeded Growth and Sizeâ€Dependent SERS Property. Particle and Particle Systems Characterization, 2016, 33, 924-932.	2.3	47
32	Revitalizing the Frens Method To Synthesize Uniform, Quasi-Spherical Gold Nanoparticles with Deliberately Regulated Sizes from 2 to 330 nm. Langmuir, 2016, 32, 5870-5880.	3.5	93
33	Empirical structural design of core@shell Au@Ag nanoparticles for SERS applications. Journal of Materials Chemistry C, 2016, 4, 6649-6656.	5.5	27
34	Citrate-Regulated Surface Morphology of SiO ₂ @Au Particles To Control the Surface Plasmonic Properties. Journal of Physical Chemistry C, 2016, 120, 377-385.	3.1	25
35	{331}-Faceted trisoctahedral gold nanocrystals: synthesis, superior electrocatalytic performance and highly efficient SERS activity. Nanoscale, 2015, 7, 8405-8415.	5.6	46
36	Synthesis of open-mouthed, yolk–shell Au@AgPd nanoparticles with access to interior surfaces for enhanced electrocatalysis. Chemical Science, 2015, 6, 4350-4357.	7.4	77

#	Article	IF	CITATIONS
37	Confined Flocculation of Ionic Pollutants by Poly(<scp>l</scp> -dopa)-Based Polyelectrolyte Complexes in Hydrogel Beads for Three-Dimensional, Quantitative, Efficient Water Decontamination. Langmuir, 2015, 31, 6351-6366.	3.5	70
38	lonâ€Specific Oil Repellency of Polyelectrolyte Multilayers in Water: Molecular Insights into the Hydrophilicity of Charged Surfaces. Angewandte Chemie - International Edition, 2015, 54, 4851-4856.	13.8	70
39	Fabrication of spinel Li 4â^'x Ti 5 O 12 via ion exchange for high-rate lithium-ion batteries. Journal of Power Sources, 2015, 283, 237-242.	7.8	8
40	Correlation of Surface Ag Content in AgPd Shells of Ultrasmall Core–Shell Au@AgPd Nanoparticles with Enhanced Electrocatalytic Performance for Ethanol Oxidation. Journal of Physical Chemistry C, 2015, 119, 18434-18443.	3.1	45
41	Probing the Surface Hydration of Nonfouling Zwitterionic and PEG Materials in Contact with Proteins. ACS Applied Materials & Interfaces, 2015, 7, 16881-16888.	8.0	223
42	Directed self-assembly of gold nanoparticles into plasmonic chains. Soft Matter, 2015, 11, 4562-4571.	2.7	49
43	Cleaning of Oil Fouling with Water Enabled by Zwitterionic Polyelectrolyte Coatings: Overcoming the Imperative Challenge of Oil–Water Separation Membranes. ACS Nano, 2015, 9, 9188-9198.	14.6	287
44	Understanding the effect of ultrathin AuPd alloy shells of irregularly shaped Au@AuPd nanoparticles with high-index facets on enhanced performance of ethanol oxidation. Nanoscale, 2015, 7, 20105-20116.	5.6	50
45	Effect of Latent Heat in Boiling Water on the Synthesis of Gold Nanoparticles of Different Sizes by using the Turkevich Method. ChemPhysChem, 2015, 16, 447-454.	2.1	28
46	Synthesis of core–shell Au–Pt nanodendrites with high catalytic performance via overgrowth of platinum on in situ gold nanoparticles. Journal of Materials Chemistry A, 2015, 3, 368-376.	10.3	59
47	In situ assessment of the contact angles of nanoparticles adsorbed at fluid interfaces by multiple angle of incidence ellipsometry. Soft Matter, 2014, 10, 6999-7007.	2.7	20
48	Water-soluble gold nanoclusters with pH-dependent fluorescence and high colloidal stability over a wide pH range via co-reduction of glutathione and citrate. RSC Advances, 2014, 4, 22651-22659.	3.6	38
49	Synthesis of Janus Particles <i>via</i> Strain-Driven Microphase Separation and Their Assembly into Nanoscale Vesicles. ACS Nano, 2014, 8, 11206-11213.	14.6	19
50	Transition metal ion-assisted synthesis of monodisperse, quasi-spherical gold nanocrystals via citrate reduction. CrystEngComm, 2014, 16, 5268.	2.6	11
51	High Yield Seedless Synthesis of High-Quality Gold Nanocrystals with Various Shapes. Langmuir, 2014, 30, 2480-2489.	3.5	42
52	Synthesis of Monodisperse, Quasi-Spherical Silver Nanoparticles with Sizes Defined by the Nature of Silver Precursors. Langmuir, 2014, 30, 2498-2504.	3.5	55
53	Interfacial nanodroplets guided construction of hierarchical Au, Au-Pt and Au-Pd particles as excellent catalysts. Scientific Reports, 2014, 4, 4849.	3.3	43
54	Surface Active Nanoparticles for Interfacial Catalysis. , 2014, , 1-17.		0

#	Article	IF	CITATIONS
55	Size sorting of ultrasmall magnetic nanoparticles and their aggregates behaviour. Materials Research Bulletin, 2013, 48, 4294-4300.	5.2	10
56	Freestanding monolayered nanoporous gold films with high electrocatalytic activity via interfacial self-assembly and overgrowth. Journal of Materials Chemistry A, 2013, 1, 4678.	10.3	42
57	On the Synthesis of Au Nanoparticles Using EDTA as a Reducing Agent. Journal of Physical Chemistry C, 2013, 117, 20958-20966.	3.1	39
58	Synthesis of Janus particles via kinetic control of phase separation in emulsion droplets. Chemical Communications, 2013, 49, 9746.	4.1	21
59	Novel lithium-loaded porous aromatic framework for efficient CO ₂ and H ₂ uptake. Journal of Materials Chemistry A, 2013, 1, 752-758.	10.3	88
60	Adsorbed emulsion droplets: capping agents for in situ heterogeneous engineering of particle surfaces. Chemical Communications, 2013, 49, 11563.	4.1	12
61	Influence of adsorbed gas at liquid/solid interfaces on heterogeneous cavitation. Chemical Science, 2013, 4, 248-256.	7.4	53
62	Stability of Interfacial Nanobubbles. Langmuir, 2013, 29, 1017-1023.	3.5	189
63	Sizeâ€Ðependent Electrostatic Chain Growth of pHâ€&ensitive Hairy Nanoparticles. Angewandte Chemie - International Edition, 2013, 52, 3726-3730.	13.8	49
64	Simple Synthesis of Monodisperse, Quasi-spherical, Citrate-Stabilized Silver Nanocrystals in Water. Langmuir, 2013, 29, 5074-5079.	3.5	106
65	Janus-like Pickering emulsions and their controllable coalescence. Chemical Communications, 2013, 49, 10871.	4.1	38
66	Dynamic Investigation of Interaction of Biocompatible Iron Oxide Nanoparticles with Epithelial Cells for Biomedical Applications. Journal of Biomedical Nanotechnology, 2013, 9, 1556-1569.	1.1	8
67	Cells as factories for humanized encapsulation. , 2012, , .		0
68	Shape-controlled self-assembly of colloidal nanoparticles. Chemical Science, 2012, 3, 2252.	7.4	14
69	Layer-by-layer assembled enzyme multilayers with adjustable memory performance and low power consumption via molecular-level control. Journal of Materials Chemistry, 2012, 22, 4645.	6.7	21
70	Immobilization of lipase B within micron-sized poly-N-isopropylacrylamide hydrogel particles by solvent exchange. Physical Chemistry Chemical Physics, 2012, 14, 9594.	2.8	43
71	Electrostatic Repulsion-Controlled Formation of Polydopamine–Gold Janus Particles. Langmuir, 2012, 28, 13060-13065.	3.5	58
72	Rapid Seeded Growth of Monodisperse, Quasi-Spherical, Citrate-Stabilized Gold Nanoparticles via H ₂ O ₂ Reduction. Langmuir, 2012, 28, 13720-13726.	3.5	114

#	Article	IF	CITATIONS
73	Bidirectional Nanoparticle Crossing of Oil–Water Interfaces Induced by Different Stimuli: Insight into Phase Transfer. Angewandte Chemie - International Edition, 2012, 51, 9647-9651.	13.8	42
74	High-Throughput Transformation of Colloidal Polymer Spheres to Discs Simply via Magnetic Stirring of Their Dispersions. Langmuir, 2012, 28, 6436-6440.	3.5	34
75	Interfacial Basicity-Guided Formation of Polydopamine Hollow Capsules in Pristine O/W Emulsions – Toward Understanding of Emulsion Template Roles. Chemistry of Materials, 2011, 23, 5105-5110.	6.7	94
76	Stimuli-Responsive Magnetite Nanoparticle Monolayers. Journal of Physical Chemistry C, 2011, 115, 5478-5484.	3.1	17
77	Langmuir and Gibbs Magnetite NP Layers at the Air/Water Interface. Langmuir, 2011, 27, 1192-1199.	3.5	21
78	Conformational induced behaviour of copolymer-capped magnetite nanoparticles at the air/water interface. Soft Matter, 2011, 7, 4267.	2.7	21
79	Cells as Factories for Humanized Encapsulation. Nano Letters, 2011, 11, 2152-2156.	9.1	64
80	Synthesis and electrochemical properties of porous Pt wire electrodes for methanol electro-oxidation. Solid State Sciences, 2011, 13, 1612-1615.	3.2	8
81	Templateâ€Assisted Polyelectrolyte Encapsulation of Nanoparticles into Dispersible, Hierarchically Nanostructured Microfibers. Advanced Materials, 2011, 23, 1376-1379.	21.0	40
82	Nanoparticle Cages for Enzyme Catalysis in Organic Media. Advanced Materials, 2011, 23, 5694-5699.	21.0	193
83	Mechanism of charge transport in ligand-capped crystalline CdTe nanoparticles according to surface photovoltaic and photoacoustic results. Materials Chemistry and Physics, 2010, 123, 98-103.	4.0	12
84	Biocompatible Magnetite Nanoparticles Trapped at the Air/Water Interface. ChemPhysChem, 2010, 11, 3585-3588.	2.1	25
85	Molecular Mimetic Selfâ€Assembly of Colloidal Particles. Advanced Functional Materials, 2010, 20, 1053-1074.	14.9	128
86	Using Hydrogels to Accommodate Hydrophobic Nanoparticles in Aqueous Media via Solvent Exchange. Advanced Materials, 2010, 22, 3247-3250.	21.0	35
87	Nucleophilic Substitution Reaction Based Layerâ€byâ€Layer Growth of Superparamagnetic Nanocomposite Films with High Nonvolatile Memory Performance. Advanced Materials, 2010, 22, 5140-5144.	21.0	44
88	Layerâ€by‣ayer Growth of Polymer/Quantum Dot Composite Multilayers by Nucleophilic Substitution in Organic Media. Angewandte Chemie - International Edition, 2010, 49, 359-363.	13.8	54
89	Using Hydrogel Microparticles To Transfer Hydrophilic Nanoparticles and Enzymes to Organic Media via Stepwise Solvent Exchange. Langmuir, 2010, 26, 12980-12987.	3.5	37
90	Synthesis of Monodisperse Quasi-Spherical Gold Nanoparticles in Water via Silver(I)-Assisted Citrate Reduction. Langmuir, 2010, 26, 3585-3589.	3.5	169

#	Article	IF	CITATIONS
91	Highly Fluorescent CdTe@SiO ₂ Particles Prepared via Reverse Microemulsion Method. Chemistry of Materials, 2010, 22, 420-427.	6.7	107
92	Supraparticle physical chemistry. Physical Chemistry Chemical Physics, 2010, 12, 11819.	2.8	5
93	A detailed study of growth of nanostructured poly(aniline) particles in the light of thermodynamic interaction balance. Physical Chemistry Chemical Physics, 2010, 12, 11905.	2.8	2
94	980â€nm Laserâ€Driven Photovoltaic Cells Based on Rareâ€Earth Upâ€Converting Phosphors for Biomedical Applications. Advanced Functional Materials, 2009, 19, 3815-3820.	14.9	75
95	Hydrogenâ€Bondâ€Selective Phase Transfer of Nanoparticles across Liquid/Gel Interfaces. Angewandte Chemie - International Edition, 2009, 48, 4953-4956.	13.8	39
96	Hybrid photovoltaic cells with II–VI quantum dot sensitizers fabricated by layer-by-layer deposition of water-soluble components. Thin Solid Films, 2009, 518, 295-298.	1.8	37
97	Three-dimensional nanostructured carbon nanotube array/PtRu nanoparticle electrodes for micro-fuel cells. Electrochemistry Communications, 2009, 11, 635-638.	4.7	23
98	Colloidal Lithography—The Art of Nanochemical Patterning. Chemistry - an Asian Journal, 2009, 4, 236-245.	3.3	148
99	Genesis of Anisotropic Colloidal Particles via Protrusion of Polystyrene from Polyelectrolyte Multilayer Encapsulation. Journal of the American Chemical Society, 2009, 131, 6366-6367.	13.7	47
100	Fabrication of Colloidal Stable, Thermosensitive, and Biocompatible Magnetite Nanoparticles and Study of Their Reversible Agglomeration in Aqueous Milieu. Chemistry of Materials, 2009, 21, 1906-1914.	6.7	90
101	Using Polymers to Make Up Magnetic Nanoparticles for Biomedicine. Journal of Biomedical Nanotechnology, 2009, 5, 652-668.	1.1	33
102	Stimuliâ€Responsive Reversible Transport of Nanoparticles Across Water/Oil Interfaces. Angewandte Chemie - International Edition, 2008, 47, 320-323.	13.8	128
103	Controlling the Growth of Chargedâ€Nanoparticle Chains through Interparticle Electrostatic Repulsion. Angewandte Chemie - International Edition, 2008, 47, 3984-3987.	13.8	250
104	Fabrication of Macroscopic Freestanding Films of Metallic Nanoparticle Monolayers by Interfacial Selfâ€Assembly. Advanced Materials, 2008, 20, 4253-4256.	21.0	108
105	Morphology-controlled fabrication of polygonal ZnO nanobowls templated from spherical polymeric nanowell arrays. Journal of Colloid and Interface Science, 2008, 322, 327-332.	9.4	26
106	Surface electron structures and mechanism of nonradiative transitions on crystalline TiO2 nanoparticles. Materials Chemistry and Physics, 2008, 112, 1001-1007.	4.0	9
107	Fabrication of Colloidal Crystals with Defined and Complex Structures via Layer-by-Layer Transfer. Langmuir, 2008, 24, 13772-13775.	3.5	16
108	Capping Gold Nanoparticles with Stimuli-responsive Polymers to Cross Waterâ^'Oil Interfaces: In-Depth Insight to the Trans-Interfacial Activity of Nanoparticles. Journal of Physical Chemistry C, 2008, 112, 15207-15219.	3.1	58

#	Article	IF	CITATIONS
109	Controlled Chainlike Agglomeration of Charged Gold Nanoparticles via a Deliberate Interaction Balance. Journal of Physical Chemistry C, 2008, 112, 16830-16839.	3.1	87
110	Fabrication of Heterogeneous Binary Arrays of Nanoparticles via Colloidal Lithography. Journal of the American Chemical Society, 2008, 130, 5616-5617.	13.7	89
111	Semiconductor nanocrystal-polymer composites: using polymers for nanocrystal processing. , 2008, , 171-196.		2
112	Exploration of unusual electrical properties in carbon black/binary-polymer nanocomposites. Applied Physics Letters, 2007, 90, 152912.	3.3	30
113	Self-assembly of microspheres at the air/water/air interface into free-standing colloidal crystal films. Soft Matter, 2007, 3, 68-70.	2.7	46
114	Fabrication of Multiplex Quasi-Three-Dimensional Grids of One-Dimensional Nanostructures via Stepwise Colloidal Lithography. Nano Letters, 2007, 7, 3410-3413.	9.1	41
115	Ordered Binary Arrays of Au Nanoparticles Derived from Colloidal Lithography. Nano Letters, 2007, 7, 127-132.	9.1	79
116	Stepwise interfacial self-assembly of nanoparticles via specific DNA pairing. Physical Chemistry Chemical Physics, 2007, 9, 6313.	2.8	51
117	Hierarchical Organization of Colloidal Particles: From Colloidal Crystallization to Supraparticle Chemistry. Macromolecular Chemistry and Physics, 2007, 208, 439-445.	2.2	72
118	Environment-Induced Structure Change of As-Prepared Aqueous CdTe Nanocrystals. Journal of Physical Chemistry C, 2007, 111, 9678-9683.	3.1	15
119	Directing the self-assembly of nanocrystals beyond colloidal crystallization. Physical Chemistry Chemical Physics, 2006, 8, 3288-3299.	2.8	101
120	Fabrication of Au@CaCO3Nanoparticles by in Situ Mineralization in Hydrogel Microspheres. Chemistry of Materials, 2006, 18, 1073-1075.	6.7	8
121	Nanoembossment of Au Patterns on Microspheres. Chemistry of Materials, 2006, 18, 3985-3992.	6.7	42
122	Chitosan-Mediated Synthesis of Gold Nanoparticles on Patterned Poly(dimethylsiloxane) Surfaces. Biomacromolecules, 2006, 7, 1203-1209.	5.4	122
123	Manipulation of Aqueous Growth of CdTe Nanocrystals To Fabricate Colloidally Stable One-Dimensional Nanostructures. Journal of the American Chemical Society, 2006, 128, 10171-10180.	13.7	191
124	Fabrication of sulfonated poly(ether ether ketone ketone) membranes with high proton conductivity. Journal of Membrane Science, 2006, 281, 1-6.	8.2	55
125	Understanding the self-assembly of charged nanoparticles at the water/oil interface. Physical Chemistry Chemical Physics, 2006, 8, 3828-3835.	2.8	187
126	Ligand-Selective Aqueous Synthesis of One-Dimensional CdTe Nanostructures. Angewandte Chemie - International Edition, 2006, 45, 748-751.	13.8	104

#	Article	IF	CITATIONS
127	Stepwise Directing of Nanocrystals to Self-Assemble at Water/Oil Interfaces. Angewandte Chemie - International Edition, 2006, 45, 7963-7966.	13.8	96
128	Colloidally Stable Amphibious Nanocrystals Derived from Poly{[2-(dimethylamino)ethyl] Methacrylate} Capping. Angewandte Chemie - International Edition, 2005, 44, 1717-1720.	13.8	75
129	Decoration of Microspheres with Gold Nanodots—Giving Colloidal Spheres Valences. Angewandte Chemie - International Edition, 2005, 44, 7767-7770.	13.8	92
130	Colloidally Stable Amphibious Nanocrystals Derived from Poly{[2-(dimethylamino)ethyl] Methacrylate} Capping. Angewandte Chemie, 2005, 117, 1745-1748.	2.0	9
131	Fabrication of Thermoresponsive Plasmonic Microspheres with Long-Term Stability from Hydrogel Spheres. Advanced Functional Materials, 2005, 15, 1611-1616.	14.9	51
132	Fabrication of Multicolor-Encoded Microspheres by Tagging Semiconductor Nanocrystals to Hydrogel Spheres. Advanced Materials, 2005, 17, 267-270.	21.0	169
133	The water/oil interface: the emerging horizon for self-assembly of nanoparticles. Soft Matter, 2005, 1, 412.	2.7	180
134	pH-Responsive Capsules Derived from Nanocrystal Templating. Langmuir, 2005, 21, 11495-11499.	3.5	54
135	Two-Dimensional Non-Close-Packing Arrays Derived from Self-Assembly of Biomineralized Hydrogel Spheres and Their Patterning Applications. Chemistry of Materials, 2005, 17, 5268-5274.	6.7	48
136	Patterning Microsphere Surfaces by Templating Colloidal Crystals. Nano Letters, 2005, 5, 143-146.	9.1	108
137	Magnetic Colloidosomes Derived from Nanoparticle Interfacial Self-Assembly. Nano Letters, 2005, 5, 949-952.	9.1	264
138	A Bio-inspired Route to Fabricate Submicrometer-Sized Particles with Unusual Shapes â^' Mineralization of Calcium Carbonate within Hydrogel Spheres. Chemistry of Materials, 2005, 17, 656-660.	6.7	57
139	Incorporating Fluorescent CdTe Nanocrystals into a Hydrogel via Hydrogen Bonding:Â Toward Fluorescent Microspheres with Temperature-Responsive Properties. Chemistry of Materials, 2005, 17, 2648-2653.	6.7	169
140	Fabrication of Superhydrophobic Surfaces from Binary Colloidal Assembly. Langmuir, 2005, 21, 9143-9148.	3.5	228
141	Optical Properties of Nanoparticle-Based Metallodielectric Inverse Opals. Small, 2004, 1, 122-130.	10.0	47
142	Directing Self-Assembly of Nanoparticles at Water/Oil Interfaces. Angewandte Chemie - International Edition, 2004, 43, 5639-5642.	13.8	418
143	Rapid Fabrication of Binary Colloidal Crystals by Stepwise Spin-Coating. Advanced Materials, 2004, 16, 244-247.	21.0	212
144	Directing Self-Assembly of Nanoparticles at Water/Oil Interfaces. Angewandte Chemie, 2004, 116, 5757-5760.	2.0	80

#	Article	IF	CITATIONS
145	Template-directed colloidal self-assembly – the route to â€~top-down' nanochemical engineering. Journal of Materials Chemistry, 2004, 14, 459-468.	6.7	202
146	Lithium Niobate Inverse Opals Prepared by Templating Colloidal Crystals of Polyelectrolyte-Coated Spheres. Advanced Materials, 2003, 15, 205-210.	21.0	40
147	Composite Photonic Crystals from Semiconductor Nanocrystal/Polyelectrolyte-Coated Colloidal Spheres. Chemistry of Materials, 2003, 15, 2724-2729.	6.7	90
148	Polyelectrolyte-Coated Colloid Spheres as Templates for Solâ^'Gel Reactions. Chemistry of Materials, 2002, 14, 1909-1913.	6.7	114
149	Semiconductor Quantum Dot-Labeled Microsphere Bioconjugates Prepared by Stepwise Self-Assembly. Nano Letters, 2002, 2, 857-861.	9.1	310
150	Gold–Silica Inverse Opals by Colloidal Crystal Templating. Advanced Materials, 2002, 14, 908.	21.0	91
151	Synthesis of Macroporous Titania and Inorganic Composite Materials from Coated Colloidal SpheresA Novel Route to Tune Pore Morphology. Chemistry of Materials, 2001, 13, 364-371.	6.7	174
152	Fabrication of heterogeneous macroporous materials based on a sequential electrostatic deposition process. Chemical Communications, 2001, , 489-490.	4.1	21
153	Fabrication of Polyaniline Inverse Opals via Templating Ordered Colloidal Assemblies. Advanced Materials, 2001, 13, 350-354.	21.0	175
154	Preparation of Gold/triblock Copolymer Composite Nanoparticles. Journal of Nanoparticle Research, 2000, 2, 381-385.	1.9	9
155	Synthesis and characterization of low temperature degradable polymers. Journal of Materials Science Letters, 2000, 19, 2109-2111.	0.5	4
156	Synthesis and characteristics of ZnS/CdS composite nanocrystals in block copolymer micelle. Journal of Materials Research, 1999, 14, 2381-2384.	2.6	9
157	Studies on CrSi ₂ Nanocrystal Encapsulated with Styrene/Acrylonitrile Copolymer. Molecular Crystals and Liquid Crystals, 1999, 337, 205-208.	0.3	0
158	Preparation and Characteristics of α-Fe2O3 Nanocrystalline/Block Copolymer Heterostructure Composite. Molecular Crystals and Liquid Crystals, 1999, 337, 229-232.	0.3	2
159	Size Control of CdS Nanocrystals in Block Copolymer Micelle. Chemistry of Materials, 1999, 11, 392-398.	6.7	38
160	Fe2O3/macroporous resin nanocomposites. High efficiency catalysts for hydroxylation of phenol with H2O2. Reaction Kinetics and Catalysis Letters, 1998, 65, 233-238.	0.6	6
161	Fe2O3/macroporous resin nanocomposites: Some novel highly efficient catalysts for hydroxylation of phenol with H2O2. Applied Catalysis A: General, 1998, 174, 25-32.	4.3	32