
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8941649/publications.pdf Version: 2024-02-01

ALES LID

#	Article	IF	CITATIONS
1	Simulation-Aided Handover Prediction From Video Using Recurrent Image-to-Motion Networks. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35, 494-506.	7.2	3
2	Mechanical design and friction modelling of a cable-driven upper-limb exoskeleton. Mechanism and Machine Theory, 2022, 171, 104746.	2.7	7
3	Integration of a reconfigurable robotic workcell for assembly operations in automotive industry. , 2022, , .		3
4	A Virtual Mechanism Approach for Exploiting Functional Redundancy in Finishing Operations. IEEE Transactions on Automation Science and Engineering, 2021, 18, 2048-2060.	3.4	12
5	Robot skill learning in latent space of a deep autoencoder neural network. Robotics and Autonomous Systems, 2021, 135, 103690.	3.0	17
6	Digital innovation hubs for robotics – TRINITY approach for distributing knowledge via modular use case demonstrations. Procedia CIRP, 2021, 97, 45-50.	1.0	6
7	Reconstructing Spatial Aspects of Motion by Image-to-Path Deep Neural Networks. IEEE Robotics and Automation Letters, 2021, 6, 255-262.	3.3	3
8	Analysis of Methods for Incremental Policy Refinement by Kinesthetic Guidance. Journal of Intelligent and Robotic Systems: Theory and Applications, 2021, 102, 1.	2.0	12
9	Specifying and optimizing robotic motion for visual quality inspection. Robotics and Computer-Integrated Manufacturing, 2021, 72, 102200.	6.1	7
10	Generalization-Based Acquisition of Training Data for Motor Primitive Learning by Neural Networks. Applied Sciences (Switzerland), 2021, 11, 1013.	1.3	10
11	Modular ROS-based software architecture for reconfigurable, Industry 4.0 compatible robotic workcells. , 2021, , .		4
12	Intention Recognition with Recurrent Neural Networks for Dynamic Human-Robot Collaboration. , 2021, , .		5
13	Technical Maturity for Industrial Deployment of Robot Demonstrators. , 2021, , .		2
14	A New Phase Determination Algorithm for Iterative Learning of Human-Robot Collaboration. , 2021, , .		0
15	Design of a Modular Robotic Workcell Platform Enabled by Plug & Produce Connectors. , 2021, , .		4
16	Reduction of Trajectory Encoding Data Using a Deep Autoencoder Network: Robotic Throwing. Advances in Intelligent Systems and Computing, 2020, , 86-94.	0.5	1
17	Knowledge Acquisition Through Human Demonstration for Industrial Robotic Assembly. Advances in Intelligent Systems and Computing, 2020, , 346-353.	0.5	1
18	Learning of Exception Strategies in Assembly Tasks. , 2020, , .		3

Learning of Exception Strategies in Assembly Tasks. , 2020, , . 18

#	Article	IF	CITATIONS
19	Training of deep neural networks for the generation of dynamic movement primitives. Neural Networks, 2020, 127, 121-131.	3.3	27
20	Smart hardware integration with advanced robot programming technologies for efficient reconfiguration of robot workcells. Robotics and Computer-Integrated Manufacturing, 2020, 66, 101979.	6.1	39
21	Generalization Based Database Acquisition for Robot Learning inÂReduced Space. Mechanisms and Machine Science, 2020, , 496-504.	0.3	0
22	Cut & recombine: reuse of robot action components based on simple language instructions. International Journal of Robotics Research, 2019, 38, 1179-1207.	5.8	4
23	Learning to Write Anywhere with Spatial Transformer Image-to-Motion Encoder-Decoder Networks. , 2019, , .		3
24	Incremental Policy Refinement by Recursive Regression and Kinesthetic Guidance. , 2019, , .		2
25	Automatic Fingertip Exchange System for Robotic Grasping in Flexible Production Processes. , 2019, , .		7
26	Learning of Robotic Throwing at a Target using a Qualitative Learning Reward. , 2019, , .		1
27	Autonomous Learning of Assembly Tasks from the Corresponding Disassembly Tasks. , 2019, , .		7
28	Robotic Learning for Increased Productivity: Autonomously Improving Speed of Robotic Visual Quality Inspection. , 2019, , .		2
29	Exoskeleton Arm Pronation/Supination Assistance Mechanism With A Guided Double Rod System. , 2019, , \cdot		7
30	Base Frame Calibration of a Reconfigurable Multi-robot System with Kinesthetic Guidance. Mechanisms and Machine Science, 2019, , 651-659.	0.3	0
31	Teaching a Robot the Semantics of Assembly Tasks. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, 48, 670-692.	5.9	46
32	Adaptive Human Robot Cooperation Scheme for Bimanual Robots. Springer Proceedings in Advanced Robotics, 2018, , 371-380.	0.9	3
33	Skill learning and action recognition by arc-length dynamic movement primitives. Robotics and Autonomous Systems, 2018, 100, 225-235.	3.0	24
34	Human robot cooperation with compliance adaptation along the motion trajectory. Autonomous Robots, 2018, 42, 1023-1035.	3.2	51
35	User Feedback in Latent Space Robotic Skill Learning. , 2018, , .		6
36	Learning Task-Specific Dynamics to Improve Whole-Body Control. , 2018, , .		3

#	Article	IF	CITATIONS
37	An Efficient PbD Framework for Fast Deployment of Bi-Manual Assembly Tasks. , 2018, , .		15
38	Learning by Demonstration and Adaptation of Finishing Operations Using Virtual Mechanism Approach. , 2018, , .		9
39	Passivity Based Iterative Learning of Admittance-Coupled Dynamic Movement Primitives for Interaction with Changing Environments. , 2018, , .		16
40	Deep Encoder-Decoder Networks for Mapping Raw Images to Dynamic Movement Primitives. , 2018, , .		9
41	Accelerated Sensorimotor Learning of Compliant Movement Primitives. IEEE Transactions on Robotics, 2018, 34, 1636-1642.	7.3	24
42	Visual Inspection and Error Detection in a Reconfigurable Robot Workcell: An Automotive Light Assembly Example. , 2018, , .		5
43	Compensating Pose Uncertainties through Appropriate Gripper Finger Cutouts. Acta Mechanica Et Automatica, 2018, 12, 78-83.	0.3	8
44	Generalization of orientation trajectories and force-torque profiles for robotic assembly. Robotics and Autonomous Systems, 2017, 98, 333-346.	3.0	44
45	Door opening by joining reinforcement learning and intelligent control. , 2017, , .		14
46	Rapid hardware and software reconfiguration in a robotic workcell. , 2017, , .		20
47	Adapting to contacts: Energy tanks and task energy for passivity-based dynamic movement primitives. , 2017, , .		33
48	Cooperative movements through hierarchical database search. , 2017, , .		1
49	Enhancing the performance of adaptive iterative learning control with reinforcement learning. , 2017, , .		11
50	Compliant movement primitives in a bimanual setting. , 2017, , .		12
51	Rapid state machine assembly for modular robot control using meta-scripting, templating and code generation. , 2017, , .		2
52	Hammering Does Not Fit Fitts' Law. Frontiers in Computational Neuroscience, 2017, 11, 45.	1.2	3
53	Reconfigurable fixture evaluation for use in automotive light assembly. , 2017, , .		6
54	The AUTOWARE Framework and Requirements for the Cognitive Digital Automation. IFIP Advances in Information and Communication Technology, 2017, , 107-117.	0.5	16

#	Article	IF	CITATIONS
55	Extracting Objects for Aerial Manipulation on UAVs Using Low Cost Stereo Sensors. Sensors, 2016, 16, 700.	2.1	17
56	On-line coaching of robots through visual and physical interaction: Analysis of effectiveness of human-robot interaction strategies. , 2016, , .		9
57	Optimizing grippers for compensating pose uncertainties by dynamic simulation. , 2016, , .		1
58	Bimanual human robot cooperation with adaptive stiffness control. , 2016, , .		13
59	Transfer of contact skills to new environmental conditions. , 2016, , .		8
60	Generalization of orientational motion in unit quaternion space. , 2016, , .		5
61	Action-grounded surface geometry and volumetric shape feature representations for object affordance prediction. , 2016, , .		0
62	Trajectory representation by nonlinear scaling of dynamic movement primitives. , 2016, , .		5
63	Speed adaptation for self-improvement of skills learned from user demonstrations. Robotica, 2016, 34, 2806-2822.	1.3	15
64	Learning of assembly constraints by demonstration and active exploration. Industrial Robot, 2016, 43, 524-534.	1.2	15
65	Adaptation and coaching of periodic motion primitives through physical and visual interaction. Robotics and Autonomous Systems, 2016, 75, 340-351.	3.0	43
66	Learning Compliant Movement Primitives Through Demonstration and Statistical Generalization. IEEE/ASME Transactions on Mechatronics, 2016, 21, 2581-2594.	3.7	62
67	Adaptive Control of Exoskeleton Robots for Periodic Assistive Behaviours Based on EMG Feedback Minimisation. PLoS ONE, 2016, 11, e0148942.	1.1	123
68	Adaptation of Motor Primitives to the Environment Through Learning and Statistical Generalization. Advances in Intelligent Systems and Computing, 2016, , 449-457.	0.5	1
69	Autonomous Learning of Internal Dynamic Models for Reaching Tasks. Advances in Intelligent Systems and Computing, 2016, , 439-447.	0.5	1
70	Enhanced Policy Adaptation Through Directed Explorative Learning. International Journal of Humanoid Robotics, 2015, 12, 1550028.	0.6	4
71	Generalization of discrete Compliant Movement Primitives. , 2015, , .		0
72	Self-Supervised Online Learning of Basic Object Push Affordances. International Journal of Advanced Robotic Systems, 2015, 12, 24.	1.3	10

#	Article	IF	CITATIONS
73	Synthesis of New Dynamic Movement Primitives Through Search in a Hierarchical Database of Example Movements. International Journal of Advanced Robotic Systems, 2015, 12, 137.	1.3	8
74	Pushing and grasping for autonomous learning of object models with foveated vision. , 2015, , .		1
75	Adaptation of bimanual assembly tasks using iterative learning framework. , 2015, , .		14
76	Learning of parametric coupling terms for robot-environment interaction. , 2015, , .		13
77	Accelerating synchronization of movement primitives: Dual-arm discrete-periodic motion of a humanoid robot. , 2015, , .		7
78	Force adaptation with recursive regression Iterative Learning Controller. , 2015, , .		11
79	Bio-inspired learning and database expansion of Compliant Movement Primitives. , 2015, , .		4
80	Comparison of action-grounded and non-action-grounded 3-D shape features for object affordance classification. , 2015, , .		5
81	Probabilistic semantic models for manipulation action representation and extraction. Robotics and Autonomous Systems, 2015, 65, 40-56.	3.0	6
82	Real-time full body motion imitation on the COMAN humanoid robot. Robotica, 2015, 33, 1049-1061.	1.3	18
83	Structural Bootstrapping—A Novel, Generative Mechanism for Faster and More Efficient Acquisition of Action-Knowledge. IEEE Transactions on Autonomous Mental Development, 2015, 7, 140-154.	2.3	21
84	Building object models through interactive perception and foveated vision. Advanced Robotics, 2015, 29, 611-623.	1.1	3
85	Adaptation of manipulation skills in physical contact with the environment to reference force profiles. Autonomous Robots, 2015, 39, 199-217.	3.2	100
86	Exploration in structured space of robot movements for autonomous augmentation of action knowledge. , 2015, , .		1
87	Reactive, task-specific object manipulation by metric reinforcement learning. , 2015, , .		4
88	Speed profile optimization through directed explorative learning. , 2014, , .		6
89	Learning and adaptation of periodic motion primitives based on force feedback and human coaching interaction. , 2014, , .		15
90	Technologies for the Fast Set-Up of Automated Assembly Processes. KI - Kunstliche Intelligenz, 2014, 28, 305-313.	2.2	17

#	Article	IF	CITATIONS
91	Online learning of task-specific dynamics for periodic tasks. , 2014, , .		9
92	Peg-in-Hole assembly under uncertain pose estimation. , 2014, , .		15
93	Fast programming of Peg-in-hole Actions by human demonstration. , 2014, , .		7
94	Human-robot cooperation through force adaptation using dynamic motion primitives and iterative learning. , 2014, , .		9
95	Rich periodic motor skills on humanoid robots: Riding the pedal racer. , 2014, , .		7
96	Physical interaction for segmentation of unknown textured and non-textured rigid objects. , 2014, , .		23
97	Online approach for altering robot behaviors based on human in the loop coaching gestures. , 2014, , .		11
98	Orientation in Cartesian space dynamic movement primitives. , 2014, , .		135
99	Coupling Movement Primitives: Interaction With the Environment and Bimanual Tasks. IEEE Transactions on Robotics, 2014, 30, 816-830.	7.3	155
100	Estimation of Cartesian Space Robot Trajectories Using Unit Quaternion Space. International Journal of Advanced Robotic Systems, 2014, 11, 137.	1.3	1
101	Solving peg-in-hole tasks by human demonstration and exception strategies. Industrial Robot, 2014, 41, 575-584.	1.2	52
102	Robot Skill Acquisition by Demonstration and Explorative Learning. Mechanisms and Machine Science, 2014, , 163-175.	0.3	5
103	Foveal Vision for Humanoid Robots. Frontiers in Neuroengineering Series, 2014, , 103-120.	0.4	1
104	A Simple Ontology of Manipulation Actions Based on Hand-Object Relations. IEEE Transactions on Autonomous Mental Development, 2013, 5, 117-134.	2.3	53
105	Transfer of assembly operations to new workpiece poses by adaptation to the desired force profile. , 2013, , .		27
106	Analysis of human peg-in-hole executions in a robotic embodiment using uncertain grasps. , 2013, , .		26
107	Structural bootstrapping at the sensorimotor level for the fast acquisition of action knowledge for cognitive robots. , 2013, , .		14
108	New Motor Primitives through Graph Search, Interpolation and Generalization. Studies in Computational Intelligence, 2013, , 137-148.	0.7	0

ALES UDE

#	Article	IF	CITATIONS
109	Motion capture and reinforcement learning of dynamically stable humanoid movement primitives. , 2013, , .		15
110	Object Learning through Interactive Manipulation and Foveated Vision. , 2013, , .		3
111	Synthesizing compliant reaching movements by searching a database of example trajectories. , 2013, , .		9
112	Velocity adaptation for self-improvement of skills learned from user demonstrations. , 2013, , .		21
113	Modulation of motor primitives using force feedback: Interaction with the environment and bimanual tasks. , 2013, , .		14
114	Toward a library of manipulation actions based on semantic object-action relations. , 2013, , .		20
115	Efficient sensorimotor learning from multiple demonstrations. Advanced Robotics, 2013, 27, 1023-1031.	1.1	21
116	Action-grounded push affordance bootstrapping of unknown objects. , 2013, , .		5
117	Integrating visual perception and manipulation for autonomous learning of object representations. Adaptive Behavior, 2013, 21, 328-345.	1.1	25
118	Discovering New Motor Primitives in Transition Graphs. Advances in Intelligent Systems and Computing, 2013, , 219-230.	0.5	3
119	Integrating surface-based hypotheses and manipulation for autonomous segmentation and learning of object representations. , 2012, , .		8
120	Action sequencing using dynamic movement primitives. Robotica, 2012, 30, 837-846.	1.3	45
121	Applying statistical generalization to determine search direction for reinforcement learning of movement primitives. , 2012, , .		8
122	On-line motion synthesis and adaptation using a trajectory database. Robotics and Autonomous Systems, 2012, 60, 1327-1339.	3.0	91
123	Segmentation and learning of unknown objects through physical interaction. , 2011, , .		15
124	Real-time generalization and integration of different movement primitives. , 2011, , .		5
125	Reinforcement learning of ball-in-a-cup playing robot. , 2011, , .		4
126	Exploiting previous experience to constrain robot sensorimotor learning. , 2011, , .		13

Exploiting previous experience to constrain robot sensorimotor learning. , 2011, , . 126

#	Article	IF	CITATIONS
127	Object–Action Complexes: Grounded abstractions of sensory–motor processes. Robotics and Autonomous Systems, 2011, 59, 740-757.	3.0	127
128	Learning to pour with a robot arm combining goal and shape learning for dynamic movement primitives. Robotics and Autonomous Systems, 2011, 59, 910-922.	3.0	83
129	Constraining movement imitation with reflexive behavior: Robot squatting. , 2011, , .		4
130	Advances in Robot Programming by Demonstration. KI - Kunstliche Intelligenz, 2010, 24, 295-303.	2.2	24
131	Learning Actions from Observations. IEEE Robotics and Automation Magazine, 2010, 17, 30-43.	2.2	84
132	Optimizing parameters of trajectory representation for movement generalization: robotic throwing. , 2010, , .		6
133	Task-Specific Generalization of Discrete and Periodic Dynamic Movement Primitives. IEEE Transactions on Robotics, 2010, 26, 800-815.	7.3	292
134	Redundant control of a humanoid robot head with foveated vision for object tracking. , 2010, , .		6
135	Redundancy Control of a Humanoid Head for Foveation and Three-Dimensional Object Tracking: A Virtual Mechanism Approach. Advanced Robotics, 2010, 24, 2171-2197.	1.1	6
136	Real-time 3D marker tracking with a WIIMOTE stereo vision system: Application to robotic throwing. , 2010, , .		17
137	Object segmentation and learning through feature grouping and manipulation. , 2010, , .		8
138	On-line periodic movement and force-profile learning for adaptation to new surfaces. , 2010, , .		37
139	Robot learning by Gaussian process regression. , 2010, , .		5
140	Shaping Biological Motion: Adding realistic form cues to biological motion displays. Journal of Vision, 2010, 2, 336-336.	0.1	2
141	Autonomous acquisition of pushing actions to support object grasping with a humanoid robot. , 2009, , .		30
142	Active humanoid vision and object classification. , 2009, , .		0
143	Generalization of example movements with dynamic systems. , 2009, , .		24
144	Task adaptation through exploration and action sequencing. , 2009, , .		24

#	Article	IF	CITATIONS
145	Recent Advances in Intelligent Robots at J. Stefan Institute. Studies in Computational Intelligence, 2009, , 235-245.	0.7	0
146	Motion imitation and recognition using parametric hidden Markov models. , 2008, , .		13
147	Learning primitive actions through object exploration. , 2008, , .		4
148	Control and recognition on a humanoid head with cameras having different field of view. , 2008, , .		1
149	BIOLOGICALLY BASED TOP-DOWN ATTENTION MODULATION FOR HUMANOID INTERACTIONS. International Journal of Humanoid Robotics, 2008, 05, 3-24.	0.6	17
150	CB: Exploring neuroscience with a humanoid research platform. , 2008, , .		3
151	The Karlsruhe Humanoid Head. , 2008, , .		74
152	MAKING OBJECT LEARNING AND RECOGNITION AN ACTIVE PROCESS. International Journal of Humanoid Robotics, 2008, 05, 267-286.	0.6	33
153	CB: a humanoid research platform for exploring neuroscience. Advanced Robotics, 2007, 21, 1097-1114.	1.1	165
154	Stereo-based Markerless Human Motion Capture for Humanoid Robot Systems. Proceedings - IEEE International Conference on Robotics and Automation, 2007, , .	0.0	21
155	The meaning of action: a review on action recognition and mapping. Advanced Robotics, 2007, 21, 1473-1501.	1.1	127
156	Synthesizing goal-directed actions from a library of example movements. , 2007, , .		13
157	Sensorimotor processes for learning object representations. , 2007, , .		6
158	Coaching: An Approach to Efficiently and Intuitively Create Humanoid Robot Behaviors. , 2006, , .		19
159	CB: A Humanoid Research Platform for Exploring NeuroScience. , 2006, , .		56
160	Learning feature representations for an object recognition system. , 2006, , .		7
161	LEARNING TO ACT FROM OBSERVATION AND PRACTICE. International Journal of Humanoid Robotics, 2004, 01, 585-611.	0.6	40
162	Programming full-body movements for humanoid robots by observation. Robotics and Autonomous Systems, 2004, 47, 93-108.	3.0	144

#	Article	IF	CITATIONS
163	Programming full-body movements for humanoid robots by observation. Robotics and Autonomous Systems, 2004, 47, 93-93.	3.0	8
164	Online tracking and mimicking of human movements by a humanoid robot. Advanced Robotics, 2003, 17, 165-178.	1.1	10
165	Real-time visual system for interaction with a humanoid robot. Robotics and Autonomous Systems, 2001, 37, 115-125.	3.0	33
166	Using humanoid robots to study human behavior. IEEE Intelligent Systems, 2000, 15, 46-56.	0.2	206
167	Filtering in a unit quaternion space for model-based object tracking. Robotics and Autonomous Systems, 1999, 28, 163-172.	3.0	42
168	Stereo grouping for model-based recognition. , 1996, , .		3
169	Vision-Based Robot Path Planning. , 1994, , 505-512.		11
170	Trajectory generation from noisy positions of object features for teaching robot paths. Robotics and Autonomous Systems, 1993, 11, 113-127.	3.0	59
171	Planning of joint trajectories for humanoid robots using B-spline wavelets. , 0, , .		44
172	Distributed visual attention on a humanoid robot. , 0, , .		31
173	Foveated vision systems with two cameras per eye. , 0, , .		30
174	Performing Periodic Tasks: On-Line Learning, Adaptation and Synchronization with External Signals. , 0, , .		4
175	A Review of Compliant Movement Primitives. , 0, , .		3
176	Manipulation Learning on Humanoid Robots. Current Robotics Reports, 0, , .	5.1	1